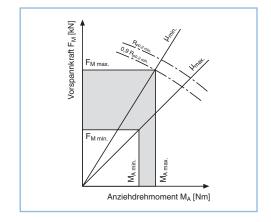
Zuordnung von Reibungszahlklassen mit Richtwerten zu verschiedenen Werkstoffen, Oberflächen und Schmierzuständen bei Schraubenverbindungen

nach VDI 2230, Ausgabe 2015

Die Reibungswerte μ_G , μ_K weisen Streuungen auf, da sie von vielen Faktoren abhängig sind, wie z. B. von den Werkstoffpaarungen, der Oberflächengüte (Rautiefen), der Oberflächenbehandlung (u. a. blank, geschwärzt, galvanisch verzinkt, Zink-Lamellen-Überzüge).

Weiterhin sind die Reibungswerte abhängig von der Art der Schmierung (ohne / mit Öl, Molybdändisulfid, Molykote-Paste, Gleitbeschichtung etc.)! Die folgenden Tabellen enthalten Reibungszahlen für Gewinde und Auflageflächen.


Die Tabelle gilt für Raumtemperatur.

Reibungszahl- klasse	Bereich für μ_G und μ_K	Auswahl typischer Beispiele für: Werkstoff / Oberflächen	Schmierstoffe
A	0,04-0,10	metallisch blank vergütungs-schwarz phosphatiert galvanische Überzüge wie Zn, Zn/Fe, Zn/Ni Zink-Lamellen-Überzüge	Festschmierstoffe wie MoS ₂ , Graphit, PTFE, PA, PE, PI in Gleitlacken, als Top-Coats oder in Pasten, Wachsschmelzen Wachsdispersionen
В	0,08-0,16	metallisch blank vergütungs-schwarz phosphatiert galvanische Überzüge wie Zn, Zn/Fe, Zn/Ni Zink-Lamellen-Überzüge Al- und Mg-Legierungen	Festschmierstoffe wie MoS ₂ , Graphit, PTFE, PA, PE, PI in Gleitlacken, als Top-Coats oder in Pasten, Wachsschmelzen, Wachsdispersionen, Fette, Öle, Anlieferzustand
		feuerverzinkt	MoS ₂ , Graphit, Wachsdispersionen
		organische Beschichtungen	integrierter Festschmierstoff oder Wachsdispersionen
		austenitischer Stahl	Festschmierstoffe oder Wachse, Pasten
С	0,14-0,24	austenitischer Stahl	Wachsdispersionen, Pasten
		metallisch blank phosphatiert	Anlieferungszustand (leicht geölt)
		galvanische Überzüge wie Zn, Zn/Fe, Zn/Ni Zink-Lamellen-Überzüge Klebstoff	ohne
D	0,20-0,35	austenitischer Stahl	ÖI
		galvanische Überzüge wie Zn, Zn/Fe feuerverzinkt	ohne
E	≥ 0,30	galvanische Überzüge wie Zn/Fe, Zn/Ni austenitischer Stahl Al-, Mg-Legierungen	ohne

Es sind Reibungszahlen **anzustreben**, die sich in die **Reibungszahlklasse B** einordnen, um eine möglichst hohe Vorspannkraft bei geringer Streuung aufzubringen. Dies bedeutet nicht automatisch die Verwendung der Kleinstwerte und dass die vorhandene Reibungszahlstreuung der Klassenstreuung entspricht.

Für eine sichere Montage ist es wichtig, die Reibungsbedingungen genau zu definieren und deren Streuung so eng wie möglich zu halten. Bei grosser Streuung wird die erzielte Vorspannkraft sehr stark schwanken. Die übliche Toleranz des Anziehdrehmomentes hat dagegen nur einen kleinen Einfluss.

 $\begin{array}{ll} \mu_G &=& Reibungszahl \ im \ Gewinde \\ \mu_K &=& Reibungszahl \ in \ der \ Kopfauflage \\ \mu_T &=& Reibungszahl \ in \ der \ Trennfuge \end{array}$

