Utilisation des valeurs indicatives

Précontraintes et couples de serrage

Ce procédé ne peut pas remplacer le calcul selon VDI 2230 et ne correspond pas à l'état actuel de la technique. Il peut toutefois éviter une rupture de vis lors du montage de vis non calculées. Une des causes principales de telles ruptures est le coefficient de frottement qui est plus faible que prévu.

1er pas: Coefficient de frottement $\mu_{K} = \mu_{G}$

Lors d'une incertitude concernant les états de surface et de lubrification exacts du filetage et des surfaces de contact, le plus petit coefficient de frottement $\mu_K = \mu_G$ pouvant être obtenu en pratique (1e montage, maintenance, réparation ...) doit être choisi dans le tableau à la page F.049.

Exemple:

Choix pour vis et écrou avec état de surface zingué électrolytiquement

Coefficient de frottement $\mu_K = \mu_G = 0,14-0,24$, la plus petite valeur $\mu_K = \mu_G = 0,14$

2ème pas: Couple de serrage de montage MA max

Ce couple de serrage maximal admissible lors d'une utilisation à 90% de la limite d'écoulement ($R_{\rm eL}$) resp. de la limite d'élasticité 0,2% ($R_{\rm p0,2}$) se trouve dans les tableaux à partir de la page **F.053**. Ceci est le couple de serrage maximal de montage lors de l'utilisation d'une visseuse moderne avec une imprécision de couple max. de 5%.

Exemple:

Vis à tête hexagonale ISO 4017, M12, classe de qualité 8.8, zinguée. Consultez la page **F.054**, colonne 1 «filetage» M12, ligne $\mu_K = \mu_G = 0,14$ pour trouver dans la partie de droite du tableau le «couple de serrage maximal» pour une «classe de qualité 8.8» Couple de serrage de montage max. $M_{A\,\text{max}} = 93\,\text{Nm}$

$3^{\rm ème}$ pas: Précontrainte de montage maximale $F_{\rm M\ max}$

A partir du couple de serrage $\rm M_{A\,max}$, vous avez la possibilité de relever dans le même tableau la précontrainte de montage maximale $\rm F_{M\,max}$ résultante.

Exemple:

Dans la partie gauche du tableau, vous trouvez dans la colonne «classe de qualité 8.8» sur la ligne «M12/0,14» la précontrainte de montage maximale $F_{M max} = 41,9$ kN

4ème pas: Précontrainte de montage minimale F_{M min}

Vous obtenez la précontrainte de montage minimale à partir de la précontrainte de montage maximale à l'aide du coefficient de serrage $\alpha_{_{\Delta}}$ – voir **F.051**.

Exemple:

Si le serrage s'effectue régulièrement avec une clé dynamométrique moderne courante et que le coefficient de frottement est estimé, on doit calculer avec un coefficient de serrage $\alpha_A=1.6$ à 2,0 – voir tableau sur page **F.051**. Si la clé – comme supposé dans l'exemple – donne un signal, il faut prendre en compte la plus haute valeur 2,0.

Du fait que la courte vis M12x40 se laisse serrer avec un faible angle de rotation et que la fixation est relativement rigide, une valeur inférieure peut être prise en compte.

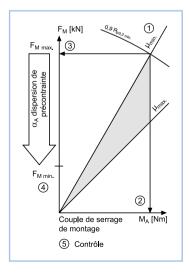
Pour cette raison supposons $\alpha_A = 1.8$

Précontrainte de montage minimale présumée:

 $F_{M \text{ min}} = F_{M \text{ max}}/\alpha_A = 41.9 \text{ kN/1.8}$

 $F_{M min} = 23,3 kN$

5ème pas: Contrôle


Un contrôle avec calculs selon VDI 2230 est «l'état actuel de la technique» est recommandé pour un dimensionnement sûr.

- La précontrainte de montage minimale F_{M min} est-elle suffisante pour les forces max. qui se produiront en pratique?
- Les pressions de surface dans les surfaces de contact sontelles trop élevées?
- Quelle est la précontrainte résultante dans des conditions de service?
- Est-ce que la résistance à la fatigue de la vis en service ne va pas être dépassée?

Si pour des raisons quelconques le couple de serrage M_A est inférieur à la valeur du tableau, la précontrainte de montage F_M et la précontrainte minimale $F_{M\, min}$ qui en dérivent vont aussi diminuer de ce pourcentage! L'utilisateur doit alors vérifier si les caractéristiques de l'assemblage sont encore suffisantes.

Causes possibles pour un tel procédé:

- plus faibles valeurs de frottement imprévisibles et ainsi un risque de rupture de vis lors du montage
- utilisation éventuelle d'une clé dynamométrique moins précise que prévu et ainsi un risque semblable de défaillance
- des éléments assemblés qui pourraient se déformer imprévisiblement etc.
- connaissances insuffisantes du personnel de montage

Valeurs indicatives pour les filetages métriques à pas gros VDI 2230

Indications sur la base de VDI 2230, édition 2015: couples de serrage admissibles maximaux et précontraintes maximales résultantes pour vis à tête hexagonale ISO 4014 – 4018, vis à six pans creux ISO 4762 et pour vis analogues concernant la résistance de la tête et de la surface d'appui, de classe de qualité 3.6 à 12.9, lors d'une utilisation à 90 % de la limite inférieure d'écoulement $R_{\rm el}/limite$ d'élasticité 0,2 % $R_{\rm p0,2}$. Trous de passage selon ISO 273 – série moyenne.

Le tableau indique des valeurs maximales admissibles sans autres facteurs de sécurité. Il présuppose les connaissances des directives applicables et des critères de dimensionnement.

■ Valeurs indicatives F.053 et F.054

Les valeurs indicatives sont plus élevées que dans l'ancienne version VDI 2230, édition 1986, parce que la prise en compte des réserves disponibles permet une meilleure utilisation de la résistance de la vis par une précontrainte de montage plus élevée. Calcul de justification nécessaire! VDI 2230, édition 2015

Couple de serrage tableaux F.053 et F.054

Avec $M_A = F_M \cdot X$, on peut calculer le couple de serrage correspondant à une autre précontrainte.

	Coeff.	Précont	rainte ma	ximale F _M	max [N]				Couple	de serrag	e maxima	I M _{A max} [N	lcm]			×
o o	de frotte- ment	Classe	de qualité	selon ISC	0 898/1				Classe de qualité selon ISO 898/1							r de sion
Filetage	$\mu_{K} = \mu_{G}$	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	Facteur de conversion X
M1,6	0,10	176	235	294	470	627	882	1058	4,2	5,7	7,1	11,3	15,1	21,2	25,5	0,024
	0,12	171	228	285	455	607	854	1025	4,7	6,3	7,9	12,6	16,9	23,7	28,5	0,028
	0,14	165	220	275	441	588	826	992	5,2	6,9	8,7	13,9	18,5	26	31,2	0,032
M2	0,10	292	390	487	779	1039	1461	1754	9	11,9	14,9	23,8	31,7	44,5	53,5	0,031
	0,12	283	378	472	756	1008	1417	1701	10	13,3	16,7	26,7	35,6	50	60	0,035
	0,14	274	366	457	732	976	1373	1647	11	14,7	18,4	29,4	39,2	55	66	0,040
M2,5	0,10	485	647	809	1294	1725	2426	2911	18	24	30	49	65	91	109	0,037
	0,12	471	628	785	1257	1676	2356	2828	21	27	34	55	73	103	123	0,044
	0,14	457	609	762	1219	1625	2285	2742	23	30	38	60	81	113	136	0,050
МЗ	0,10	726	968	1210	1936	2582	3631	4357	32	42	53	84	112	158	190	0,044
	0,12	706	941	1177	1883	2510	3530	4236	36	48	60	95	127	179	214	0,051
	0,14	685	914	1142	1827	2436	3426	4111	40	53	66	105	141	198	237	0,058

	Coeff.	Précont	rainte ma	ximale F _M	max [kN]				Couple	de serrag	e maxima	I M _{A max} [I	Vm]			×
o o	de frotte- ment	Classe	de qualité	selon ISC	D 898/1				Classe	de qualité	selon ISC	0 898/1				r de sion
Filetage	$\mu_K = \mu_G$	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	Facteur de conversion
M4	0,08	1,3	1,74	2,17	3,48	4,6	6,8	8,0	0,63	0,84	1,05	1,68	2,3	3,3	3,9	0,50
	0,10	1,26	1,68	2,10	3,36	4,5	6,7	7,8	0,73	0,97	1,21	1,94	2,6	3,9	4,5	0,58
	0,12	1,22	1,63	2,04	3,26	4,4	6,5	7,6	0,82	1,09	1,37	2,19	3,0	4,6	5,1	0,67
	0,14	1,19	1,58	1,98	3,17	4,3	6,3	7,4	0,91	1,21	1,51	2,42	3,3	4,8	5,6	0,76
M5	0,08	2,12	2,83	3,54	5,67	7,6	11,1	13,0	1,2	1,65	2,06	3,3	4,4	6,5	7,6	0,58
	0,10	2,06	2,74	3,43	5,48	7,4	10,8	12,7	1,4	1,9	2,4	3,8	5,2	7,6	8,9	0,70
	0,12	2,00	2,67	3,33	5,33	7,2	10,6	12,4	1,6	2,2	2,7	4,3	5,9	8,6	10,0	0,81
	0,14	1,94	2,59	3,23	5,18	7,0	10,3	12,0	1,8	2,4	3,0	4,8	6,5	9,5	11,2	0,93
M6	0,08	3,00	4,01	5,01	8,02	10,7	15,7	18,4	2,1	2,8	3,6	5,7	7,7	11,3	13,2	0,72
	0,10	2,90	3,87	4,84	7,74	10,4	15,3	17,9	2,5	3,3	4,1	6,6	9,0	13,2	15,4	0,86
	0,12	2,82	3,76	4,71	7,53	10,2	14,9	17,5	2,8	3,7	4,7	7,5	10,1	14,9	17,4	0,99
	0,14	2,74	3,65	4,57	7,31	9,9	14,5	17,0	3,1	4,1	5,2	8,3	11,3	16,5	19,3	1,14
M8	0,08	5,4	7,3	9,1	14,6	19,5	28,7	33,6	5,2	6,9	8,6	13,8	18,5	27,2	31,8	0,95
	0,10	5,3	7,1	8,8	14,2	19,1	28,0	32,8	6,0	8,0	10,0	16,1	21,6	31,8	37,2	1,13
	0,12	5,15	6,9	8,6	13,8	18,6	27,3	32,0	6,8	9,1	11,3	18,2	24,6	36,1	42,2	1,32
	0,14	5,0	6,7	8,3	13,4	18,1	26,6	31,1	7,5	10,1	12,6	20,1	27,3	40,1	46,9	1,51

	Coeff.	Précont	rainte ma	ximale F _N	_{I max} [kN]				Couple	de serrag	e maxima	I M _{A max} [Nm]			
	de frotte-	Classe	de qualité	selon IS	O 898/1					de qualité						9 G
Filetage	ment $\mu_K = \mu_G$	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	Facteur de conversion X
V110	0,08	8,7	11,6	14,5	23,2	31,0	45,6	53,3	10,2	13,6	17,0	27,2	36	53	62	1,16
	0,10	8,4	11,3	14,1	22,5	30,3	44,5	52,1	12	16,1	20,1	32,3	43	63	73	1,42
	0,12	8,2	11,0	13,7	21,9	29,6	43,4	50,8	13,7	18,3	22,9	36,5	48	71	83	1,65
	0,14	8,0	10,7	13,3	21,3	28,8	42,2	49,4	15,2	20,3	25,3	40,6	54	79	93	1,89
W12	0,08	12,7	16,9	21,1	33,8	45,2	66,3	77,6	17	23	29	47	63	92	108	1,39
	0,10	12,3	16,4	20,5	32,8	44,1	64,8	75,9	20	27	34	55	73	108	126	1,65
	0,12	12,0	16,0	20,0	32,0	43,0	63,2	74,0	23	31	39	62	84	123	144	1,94
	0,14	11,6	15,5	19,4	31,1	41,9	61,5	72,0	26	34	43	69	93	137	160	2,22
M14	0,08	17,4	23,2	29,0	46,4	62,0	91,0	106,5	28	37	46	74	100	146	171	1,60
	0,10	16,9	22,5	28,2	45,1	60,6	88,9	104,1	33	44	55	88	117	172	201	1,94
	0,12	16,5	21,9	27,4	43,9	59,1	86,7	101,5	37	50	62	100	133	195	229	2,26
	0,14	16,0	21,3	26,7	42,7	57,5	84,4	98,9	41	55	69	111	148	218	255	2,58
M16	0,08	23,8	31,7	39,7	63,5	84,7	124,4	145,5	42	57	71	114	153	224	262	1,80
-	0,10	23,2	30,9	38,6	61,8	82,9	121,7	142,4	50	67	84	134	180	264	309	2,17
	0,12	22,6	30,1	37,6	60,2	80,9	118,8	139,0	57	76	96	153	206	302	354	2,54
	0,14	22,0	29,3	36,6	58,6	78,8	115,7	135,4	64	85	107	171	230	338	395	2,92
V118	0,08	29,1	38,8	48,5	77,6	107	152	178	60	80	100	160	220	314	367	2,06
*****	0,10	28,2	37,7	47,1	75,3	104	149	174	70	93	117	187	259	369	432	2,48
	0,12	27,5	36,7	45,8	73,4	102	145	170	80	106	133	212	295	421	492	2,90
	0,12	26,7	35,7	44,6	71,3	99	141	165	89	118	148	236	329	469	549	3,32
M20	0,08	37,2	49,6	62,0	99,2	136	194	227	83	111	139	223	308	438	513	2,26
VIZU	0,10	36,2	48,3	60,3	96,5	134	190	223	98	131	164	262	363	517	605	2,71
	0,10	35,3	47,0	58,8	94,1	130	186	217	112	150	187	300	415	592	692	3,18
				1		1										
M22	0,14	34,3 46,3	45,8 61,7	57,2	91,6 123,5	127 170	181 242	212 283	125 113	167 151	209 189	334 303	464 417	661 595	773 696	3,65 2,46
VIZZ				77,2		ı	237	277	132	176	220	353	495	704	824	
	0,10	45,1	60,1	75,2	120,3	166				202	252	403				2,95
	0,12 0,14	44,0	58,7	73,4 71,4	117,4	162	231 225	271	151	202	284	454	567	807	945	3,46
101		42,9	57,1		114,3	158		264	172				634	904	1057	3,97
M24	0,08	53,6	71,4	89,3	142,9	196	280	327	144	192	240	385	529	754	882	2,70
	0,10	52,1	69,5	86,9	139,0	192	274	320	170	222	280	450	625	890	1041	3,25
	0,12	50,8	67,7	84,7	135,5	188	267	313	193	257	322	515	714	1017	1190	3,80
	0,14	49,4	65,9	82,4	131,8	183	260	305	215	287	359	574	798	1136	1329	4,36
M27	0,08	70,2	93,6	117,0	187,2	257	367	429	210	280	351	561	772	1100	1287	3,00
	0,10	68,4	91,2	114,0	182,4	252	359	420	248	331	414	662	915	1304	1526	3,63
	0,12	66,7	89,0	111,2	178,0	246	351	410	284	379	474	759	1050	1496	1750	4,26
	0,14	65,0	86,7	108,3	173,3	240	342	400	318	424	530	848	1176	1674	1959	4,89
M30	0,08	85,5	114,0	142,5	228,0	313	446	522	287	383	478	766	1053	1500	1755	3,36
	0,10	83,2	111,0	138,7	222,0	307	437	511	338	450	563	901	1246	1775	2077	4,06
	0,12	81,2	108,3	135,3	216,5	300	427	499	386	515	644	1031	1428	2033	2380	4,76
	0,14	79,0	105,3	131,7	210,8	292	416	487	431	575	719	1151	1597	2274	2662	5,46
/I33	0,08	106,1	141,5	176,9	283,1	389	554	649	385	514	643	1029	1415	2015	2358	3,64
	0,10	103,5	138,0	172,5	276,0	381	543	635	456	608	760	1216	1679	2392	2799	4,41
	0,12	101,0	134,7	168,4	269,4	373	531	621	523	697	871	1395	1928	2747	3214	5,17
	0,14	98,4	131,2	164,0	262,5	363	517	605	585	780	975	1560	2161	3078	3601	5,95
/ 136	0,08	124,8	166,4	208,0	332,8	458	652	763	497	663	829	1327	1825	2600	3042	3,99
	0,10	121,6	162,1	202,7	324,3	448	638	747	587	783	979	1566	2164	3082	3607	4,83
	0,12	118,7	158,2	197,8	316,4	438	623	729	672	897	1121	1793	2482	3535	4136	5,67
	0,14	115,6	154,1	192,6	308,1	427	608	711	752	1002	1253	2005	2778	3957	4631	6,51
M39	0,08	149,5	199,4	249,2	398,8	548	781	914	640	854	1067	1708	2348	3345	3914	4,28
	0,10	145,9	194,5	243,1	389,0	537	765	895	758	1011	1264	2022	2791	3975	4652	5,20
	0,12	142,4	189,9	237,4	379,8	525	748	875	870	1160	1450	2321	3208	4569	5346	6,11
	0,14	138,8	185,0	231,3	370,0	512	729	853	974	1299	1624	2598	3597	5123	5994	7,02

•••

Valeurs indicatives pour les filetages métriques à pas fin VDI 2230

Indications sur la base de VDI 2230, édition 2015 précontraintes/couples de serrage pour vis avec tige pleine classe de qualité 8.8 à 12.9 lors d'une utilisation à 90% de la limite d'élasticité $R_{\rm n02}$.

Le tableau n'a pas de facteur de sécurité et présuppose les connaissances des critères de dimensionnement.

Filetage	Coeff. de frotte-	Précontrainte F	_{M max} [kN]		Couple de s	serrage M _{A max} [Nm]	
	ment $\mu_K = \mu_G$	Classe de qual	té selon ISO 898/	1	Classe de q	ualité selon ISO 898	/1
	μ _K -μ _G	8.8	10.9	12.9	8.8	10.9	12.9
M8x1	0,08	21,2	31,1	36,4	19,3	28,4	33,2
	0,10	20,7	30,4	35,6	22,8	33,5	39,2
	0,12	20,2	29,7	34,7	26,1	38,3	44,9
	0,14	19,7	28,9	33,9	29,2	42,8	50,1
M10x1,25	0,08	33,1	48,6	56,8	38	55	65
	0,10	32,4	47,5	55,6	44	65	76
	0,12	31,6	46,4	54,3	51	75	87
	0,14	30,8	45,2	52,9	57	83	98
M12x1,25	0,08	50,1	73,6	86,2	66	97	114
	0,10	49,1	72,1	84,4	79	116	135
	0,12	48,0	70,5	82,5	90	133	155
	0,14	46,8	68,7	80,4	101	149	174
M14x1,5	0,08	67,8	99,5	116,5	104	153	179
	0,10	66,4	97,5	114,1	124	182	213
	0,12	64,8	95,2	111,4	142	209	244
	0,14	63,2	92,9	108,7	159	234	274
M16x1,5	0,08	91,4	134,2	157,1	159	233	273
	0,10	89,6	131,6	154,0	189	278	325
	0,12	87,6	128,7	150,6	218	320	374
	0,14	85,5	125,5	146,9	244	359	420
M18x1,5	0,08	122	174	204	237	337	394
	0,10	120	171	200	283	403	472
	0,12	117	167	196	327	465	544
	0,14	115	163	191	368	523	613
M20x1,5	0,08	154	219	257	327	466	545
	0,10	151	215	252	392	558	653
	0,12	148	211	246	454	646	756
	0,14	144	206	241	511	728	852
M22x1,5	0,08	189	269	315	440	627	734
	0,10	186	264	309	529	754	882
	0,12	182	259	303	613	873	1022
	0,14	178	253	296	692	985	1153
M24x2	0,08	217	310	362	557	793	928
	0,10	213	304	355	666	949	1110
	0,12	209	297	348	769	1095	1282
	0,14	204	290	339	865	1232	1442

Explication de coefficients de frottement μ Page F.049

Valeurs indicatives pour les goujons filetés à tige amincie

En acier 21 CrMo V 57 (DIN 2510 L feuille 3).

Valeurs indicatives pour précontraintes de montage et couples de serrage à 70 % de la limite d'élasticité $R_{\text{p0,2}}$.

Filetage à pas gros	M12	M12 M1		M16			M24		
Ø de la tige	8,5	8,5	12	12	15	15	18	18	
$\mu_{K} = \mu_{G}$	0,10	0,12	0,10	0,12	0,10	0,12	0,10	0,12	
F _M [N]	21600	21 600	43500	43500	67800	67800	97800	97800	
M _A [Nm]	38	44	98	115	190	220	320	370	

Couples de serrage pour vis en polyamide 6.6 et polyamide 6.6-GF50

selon DIN 34810: 2018-04

Valeurs indicatives pour des couples de serrage appropriés pour vis en polyamide 6.6 (PA6.6 + PA6.6-GF50) à 20 °C, après stockage en climat normalisé (humidité relative selon DIN 50014) jusqu'à l'obtention de l'équilibre de l'humidité.

Couples de serrage pour vis en PA6.6										
Filetage	МЗ	M4	M5	M6	M8	M10				
M _A [Nm] 0,1 0,25 0,5 0,8 1,8 3,5										

Afin de ne pas dépasser les couples de serrage indiqués dans les tableaux, une vitesse de rotation maximale de 150 t/min est recommandée sur les visseuses.

Couples de serrage pour vis en PA6.6-GF50									
Filetage	M5	M6	M8						
M _A [Nm]	0,75	1,75	4,0						

Couples de serrage (valeurs indicatives) pour vis en laiton (CU2)

Filetage	M2	M2,5	МЗ	M3,5	M4	M5	M6	M8	M10
M _A [Nm]	0,13	0,27	0,48	0,8	1,1	2,2	3,7	9,1	18,3

Vis en aciers austénitiques, INOX A1/A2/A4

Précontraintes/couples de serrage (filetages à pas gros métriques) pour vis avec tige pleine de classes de qualité 50/70/80, lors **d'une** utilisation à 90% de la limite d'élasticité $R_{p,0,2}$.

Filetage	$\mu_K = \mu_G$		ainte F _{M ma} le qualité	ax [kN]	M _{A max} [N	le serrage m] e qualité)
		50	70	80	50	70	80
	0,1	0,21	0,45	0,6	0,05	0,11	0,15
M1,6	0,2	0,18	0,39	0,5	0,08	0,17	0,22
	0,3	0,15	0,33	0,44	0,09	0,2	0,27
	0,1	0,35	0,74	1	0,11	0,23	0,30
M2	0,2	0,3	0,64	0,85	0,16	0,35	0,46
	0,3	0,25	0,55	0,7	0,2	0,43	0,57
	0,1	0,58	1,23	1,64	0,22	0,46	0,62
M2,5	0,2	0,5	1,06	1,42	0,34	0,72	0,97
	0,3	0,42	0,9	1,21	0,42	0,89	1,19
	0,1	0,86	1,84	2,5	0,37	0,8	1,1
МЗ	0,2	0,75	1,6	2,12	0,59	1,26	1,7
	0,3	0,64	1,36	1,81	0,73	1,56	2,1
	0,1	1,5	3,2	4,2	0,86	1,85	2,4
M4	0,2	1,3	2,76	3,6	1,35	2,9	3,8
	0,3	1,1	2,35	3,1	1,66	3,6	4,7
	0,1	2,4	5,2	6,9	1,6	3,6	4,8
M5	0,2	2,1	4,51	6	2,6	5,7	7,6
	0,3	1,8	3,85	5,1	3,3	7	9,4
	0,1	3,4	7,3	9,7	2,9	6,3	8,4
M6	0,2	3	6,4	8,4	4,6	10	13,2
	0,3	2,5	5,5	7,2	5,7	12,2	16,3
	0,1	6,2	13,4	17,9	7,1	15,2	20,3
M8	0,2	5,4	11,6	15,5	11,2	24,1	32,1
	0,3	4,6	9,9	13,3	13,9	30	40
	0,1	9,9	21,3	28,4	14	30	39
M10	0,2	8,6	18,5	24,7	22,2	47,7	63
	0,3	7,4	15,8	21,1	27,6	59,3	79
	0,1	14,4	31	41,4	24	51	68
M12	0,2	12,6	27	36	38	82	109
	0,3	10,7	23	30,8	47	102	136
	0,1	19,8	42,6	56,8	38	82	109
M14	0,2	17,3	37	49,5	61	131	175
M14	0,3	14,8	31,7	42,3	76	163	217
	0,1	27,2	58	77,7	58	126	168
M16	0,2	23,7	51	67,9	95	204	272
	0,3	20,3	43,5	58,2	119	255	340

Le tableau n'a pas de facteur de sécurité et présuppose les connaissances des critères de dimensionnement.

Filetage	μ _K = μ _G	Précontra Classe d	ainte F _{M ma} e qualité	_x [kN]	Couple d M _{A max} [N Classe d		
		50	70	80	50	70	80
	0,1	33,2	71	94	82	176	235
M18	0,2	28,9	62	82	131	282	376
	0,3	24,7	53	70	164	352	469
	0,1	42,5	91	121	115	247	330
M20	0,2	37,1	79,6	106	187	401	534
	0,3	31,8	68	90	234	501	669
	0,1	52,9	113	151	157	337	450
M22	0,2	46,3	99,3	132	257	551	735
	0,3	39,7	85,2	114	323	692	923
	0,1	61,2	131	175	198	426	568
M24	0,2	53,5	115	153	322	690	920
	0,3	45,8	98	131	403	863	1151
	0,1	80,2	-	-	292	-	-
M27	0,2	70,3	-	-	478	-	-
	0,3	60,3	-	-	601	-	-
	0,1	97,6	-	-	397	-	-
M30	0,2	85,5	-	-	648	-	-
	0,3	73,3	-	-	831	-	-
	0,1	121	-	-	536	_	-
M33	0,2	106	_	-	880	_	-
	0,3	91	-	-	1108	-	-
	0,1	143	-	-	690	-	-
M36	0,2	125	-	-	1130	-	-
	0,3	107	-	-	1420	-	-
	0,1	171	-	-	890	-	-
M39	0,2	150	-	-	1467	_	-
	0,3	129	_	_	1848	_	_

Les éléments d'assemblage de ces aciers austénitiques ont tendance à gripper lors du montage. Ce danger peut être diminué par des surfaces lisses, propres (filetages roulés), par une lubrification, par un revêtement glissant Molykote (noir), par une plus faible vitesse de la visseuse, ou par un serrage régulier (une visseuse à chocs n'est ainsi pas à recommander).

Explication de coefficients de frottement μ Page F.049

000

La sécurité dans la technique d'assemblage requiert une spécification précise de l'état de lubrification

Le coefficient de frottement est avant tout influencé par l'appariement des matériaux, les surfaces d'appui et leur état de lubrification. La connaissance du coefficient de frottement est primordiale pour la sécurité du montage avec la relation «couple-précontrainte».

Des attaques de corrosion dans le filetage ou sur les surfaces d'appui perturbent le comportement au desserrage après un certain temps de service. Différents appariements de matériaux, de hautes températures de service et l'humidité augmentent le risque de grippage et rendent le montage resp. démontage difficile.

Pour un processus de montage sûr – la lubrification avec un revêtement tribologique à sec est à recommander

Le revêtement tribologique à sec est un système développé pour les éléments de fixation et composants (vis, écrous, rondelles) sollicités mécaniquement. Le revêtement mince déposé par voie non électrolytique possède des propriétés lubrifiantes intégrées et procure une protection supplémentaire contre la corrosion.

Les revêtements Anti-Friction-Coatings sont des laques glissantes solides qui ressemblent à des laques industrielles courantes. **CresaCoat**® est une solution économique qui garantit des coefficients de frottement constants et qui contribue à simplifier encore plus les processus d'assemblage.

Eléments de fixation avec entraînements intérieurs et formes de têtes basses

Valeurs indic	Valeurs indicatives pour couples de serrage réduits M _A [Nm] Réf. normative ISO 7379 DIN 6912 DIN 7984 Bossard Bossard ISO 14580 ISO 14583 ~ISO 14583 ISO 7380-1 ~ISO 7380-1												
Réf. normative	ISO 7379	DIN 6912	DIN 7984	Bossard	Bossard	ISO 14580	ISO 14583	~ISO 14583	ISO 7380-1	~ISO 7380-1			
	0	(a)	0	0	(©	0	0			
Type de vis													
Acier	012.9	08.8	08.8	010.9	08.8	08.8	08.8	08.8	010.9	08.8			
	BN 1359	BN 15 BN 20737	BN 16 BN 17	BN 1206 BN 20697 BN 20698	BN 9524	BN 4850	BN 20005	BN 20228 BN 84405	BN 19 BN 13255 BN 30102	BN 6404			
M2	_	_	_	0,22	0,19	0,25	0,25	-	0,27	0,25			
M2,5	_	_	_	0,45	0,4	0,5	0,5	_	0,6	0,5			
M3	_	1	0,9	0,8	0,7	0,9	0,9	0,9	0,95	0,9			
M3,5	_	_	_	_	_	_	-	_	_	_			
M4	_	2,3	2,1	1,95	1,6	2	2	2	2,3	2			
M5	5,2	4,6	4	3,8	3,2	4	4	4	4,6	4			
M6	9	8,1	7,2	6,6	5,4	7,2	7,2	7,2	8	7,2			
M8	21,6	19,4	17,3	16	13	17	17	_	19	17,3			
M10	43	38,7	34,4	32	23	34	34	_	38	34,5			
M12	73	65	58	-	-	-	-	-	65	58			
M14	_	105	_	-	_	_	-	_	_	_			
M16	180	162	144	-	_	_	-	_	_	_			
M20	363	330	290	-	_	-	-	_	-	-			
M22	-	_	_	-	_	_	-	_	_	-			
M24	-	560	500	-	-	-	_	-	-	_			
INOX		A2/A4	A2		A2	A2	A2/A4		A2/A4				
		BN 33001 BN 1350	BN 2844		BN 20146	BN 15857	BN 5687 BN 20038		BN 1593 BN 6971 BN 8699				
M2	-	-	-	-	0,14	0,19	0,19	-	0,19	-			
M2,5	-	_	_	_	0,28	0,37	0,37	_	0,37	_			
M3	_	_	0,6	_	0,5	0,64	0,64	_	0,64	_			
M3,5	_	_	_	-	_	-	_	_	_	_			
M4	_	1,5	1,3	-	1,1	1,5	1,5	_	1,5	_			
M5	_	2,9	2,6	-	2,2	3	3	_	3	_			
M6	_	5	4,5	-	3,8	5	5	-	5	_			
M8	-	12	10	-	9,1	12	12	-	12	-			
M10	-	24	21	-	18	24	24	-	24	-			
M12	-	40	36	-	-	-	-	-	40	-			
M14	-	65	_	-	-	-	_	-	-	_			
M16	-	100	90	-	-	-	_	-	-	-			
M20	-	200	180	-	-	-	-	-	-	-			
M22	-	-	_	-	-	-	-	-	-	-			
M24	-	340	310	-	-	-	-	-	_	_			

Capacité de charge réduite Page F.058

■ Vérifier les conditions avoisinantes!

Ces vis ne sont pas appropriées pour la transmission de hautes forces en service. Les entraînements intérieurs et extérieurs de ces vis permettent seulement d'appliquer des couples de serrage réduits.

Capacité de charge réduite

Les vis selon les spécifications présentes sont soumises du fait de la géométrie de la tête et/ou de la forme de l'entraînement d'une capacité de charge réduite selon ISO 898-1, ce qui signifie qu'il faut tenir compte des couples de serrage réduits.

Les couples de serrage indiqués ne peuvent pas toujours être transmis sûrement à cause du choix de l'entraînement intérieur - des embouts coniques peuvent avoir un effet positif.

Valeurs	indicatives po	our couples d	e serrage rédi	uits M _A [Nm]							
Norme	Bossard ~ISO7380-2	Bossard ~ISO7380-2	ecosyn®-fix	ecosyn®-fix	SN 213307	ISO 14583	DIN 7991 ISO 10642	DIN 7991 ISO 10642	ISO 14581	ecosyn®-fix	DIN/ISO
		0		(4)	•		0	0		0	00
Type de vis											DIN 913/ISO 4026 DIN 34827 FL DIN 914/ISO 4027 DIN 915/ISO 4028
											DIN 916/ISO 4029 DIN 34827 CP
Acier	08.8	010.9	4.8	4.8	4.8	4.8	08.8	010.9	08.8	4.8	45 H ¹⁾
	BN 20367	BN 11252 30104	BN 5128	BN 4825	BN 380 381	BN 30503	BN 30105 2100	BN 20 21 1422 2101 2102 2103	BN 4851	BN 5950	Diverse
M2,5	-	-	0,4	0,3	0,3	-	0,5	0,55	0,5	-	_
МЗ	1	1	0,7	0,5	0,5	0,7	0,9	0,95	0,9	0,5	0,5
M4	2,5	2,5	1,6	1,2	1,2	1,6	2	2,3	2	1,2	1,5
M5	5	5	3,2	2,4	2,4	3,2	4	4,6	4	2,4	3
M6	8	8	5,4	4	4	5,4	7,2	7,9	7,2	4,1	5
M8	20 40	20 40	_	_	_	_	17	19	17	10	12
M10	-						35	38	35	20	24 40
M12 M14	66	66	-	_	-	_	58 93	65 100	58 93	34	60
M16	_	_	_	_	_	_	144	158	144	_	100
M18	_	_	_	_	_	_	-	220	205	_	120
M20	_	_	_	_	_	_	_	310	290	_	180
M22	_	_	_	_	_	_	_	420	400	_	210
M24	_	_	_	_	_	_	_	530	500	_	310
INOX	A2		A2							A2	A2/A4
	BN 2058		BN 10649	BN 5952	BN 2845			A2/A4 BN 616 4719 2104 2105	BN 3803 20039	BN 5951	Diverse
M2,5	-	-	0,5	0,4	0,4	-	-	0,23	0,23	-	-
М3	0,64	-	0,8	0,8	0,8	-	-	0,4	0,4	0,8	0,2
M4	1,5	_	1,8	1,6	1,6	-	-	0,9	0,9	1,8	0,7
M5	3,0	-	3,6	3,2	3,2	-	-	1,8	1,8	3,6	1,5
M6	5,0	-	6,3	6	6	-	-	3,1	3,1	6,3	2,5
M8	12,0	_	-	_	-	_	_	7,6	7,6	15,2	6
M10 M12	_	_	_	_	_	_	_	15 25	15 25	30 51	12 20
M14	_	_	_	_	_	_	_	40	40	-	30
M16	_	_	_	_	_	_	_	63	63	_	50
M18	_	_	_		_	_	_	85	85	_	90
M20	_	_	_	_	_	_	_	120	120	_	105
M22	_	_	_	_	_	_	_	160	160	_	150
M24	-	-	_	-	-	-	-	200	200	-	_

¹⁾ Classe de qualité et caractéristiques mécaniques selon ISO 898 partie 5 sont valables pour des vis sans tête qui ne sont pas sollicitées en traction.

Vis à embase et écrous à embase

Couples de serrage M_A [Nm] et précontraintes F_M [kN] résultantes pour vis/écrous VERBUS RIPP®/INBUS RIPP® lors d'une utilisation à 90% de la limite d'élasticité $R_{\rm p\,0.2}$

Dentures sous tête sur toute	Contre-matériau	Coefficient de	Valeurs i	ndicatives	max. des	couples de	serrage N	Λ _A [Nm]	
la surface		frottement ~µ _{tot}	M5	M6	M8	M10	M12	M14	M16
Désignation Classe de qualité	Acier R _m ≥ 800 N/mm²	0,13 à 0,16	10	18	37	80	120	215	310
VERBUS RIPP® BN 2797, BN 9727	Acier R _m < 800 N/mm ²	0,12 à 0,18	11	19	42	85	130	230	330
Classe de qualité 100	Fonte grise R _m ~150 à 450 N/mm²	0,125 à 0,16	9	16	35	75	115	200	300
	Alliage d'aluminium tendre non trempé	0,14 à 0,2	16	28	65	120	190	320	450
BN 2798, BN 14527	Alliage d'aluminium dur trempé	0,13 à 0,18	14	25	55	100	160	275	400
L'Clacco do qualitó 10									
Classe de qualité 10			~Force o	de précon	trainte F _M	[kN] ¹⁾			
Classe de qualité 10			~Force o	de précon 12,6	trainte F _M	[kN]¹) 37	54	74	102
Classe de qualité 10							54	74	102
INBUS RIPP® BN 3873	Acier R _m ≥ 800 N/mm²	0,13 à 0,16					140	74	102
INBUS RIPP®		0,13 à 0,16 0,12 à 0,18	9	12,6	23,2	37		74	102
INBUS RIPP® BN 3873	R _m ≥ 800 N/mm² Acier		9	12,6	23,2	37 85	140	74	102
INBUS RIPP® BN 3873	$R_m \ge 800 \text{ N/mm}^2$ Acier $R_m < 800 \text{ N/mm}^2$ Fonte grise	0,12 à 0,18	9 11 13 10	20 24	23,2 42 45 39	85 90 80	140	74	102

Couples de serrage M_A [Nm] et précontraintes F_M [kN] résultantes pour vis/écrous VERBUS TENSILOCK lors d'une utilisation à 90% de la limite d'élasticité $R_{\rm p\,0.2}$

Dentures sous tête sur le	Contre-matériau	Coefficient de	Valeurs i	ndicatives	max. des	couples de	e serrage N	/ _A [Nm]	
diamètre extérieur		frottement ~µ _{tot}	M5	M6	M8	M10	M12	M14	M16
Désignation Classe de qualité	Acier R _m ~500 à 900 N/mm²	0,14 à 0,18	9,5	16,5	40	79	137	218	338
VERBUS TENSILOCK® BN 73	Fonte grise R _m ~150 à 450 N/mm²	0,12 à 0,18	7,6	13,2	31,8	63	108	172	264
Classe de qualité 90	Alliage d'aluminium tendre non trempé	0,16 à 0,24	10,5	18,2	44	87	150	240	372
			~Force	de précor	trainte F _N	[kN] ¹⁾			
			6,35	9	16,5	26,6	38,3	52,5	73
BN 190, BN 30312, BN 20230, BN 80014 Classe de qualité 8									
Vis à tête hexagonale à crans d'arrêt	Acier R _m ~500 à 900 N/mm²	0,12 à 0,18	6,5	11,3	27,3	54	93	148	230
BN 20170, BN 20226, BN 80007 Classe de qualité 8.8	Fonte grise R _m ~150 à 450 N/mm²	0,12 à 0,16	5,9	10,1	24,6	48	84	133	206
Classe de qualité 6.6	Alliage d'aluminium tendre non trempé	0,14 à 0,2	7,8	13,6	32,7	65	112	178	276
			~Force	de précor	trainte F _N	[kN] ¹⁾			
			7	9,9	18,1	28,8	41,9	57,5	78,8

¹) Valeurs indicatives avec éléments d'assemblage sans revêtement pour obtenir la précontrainte F_M [kN] sur un matériau en acier d'une résistance à la traction de ≤ 800 N/mm²

! Montage

Les valeurs indicatives pour les précontraintes possibles sont à vérifier en pratique.

Couples de serrage M_A [Nm] et précontraintes F_M [kN] résultantes pour vis ecosyn®-grip lors d'une utilisation à 90 % de la limite d'élasticité $R_{\rm p\,0.2}$

Surface sous tête entièrement	Contre-matériau	frottement ~u.	Valeurs indicative	es max. des coupl	es de serrage M _A	[Nm]
dentées		frottement ~µ _{tot}	M5	M6	M8	M10
Désignation Classe de qualité	Acier R _m ~500 à 900 N/mm²	0,15 à 0,20	8,5	15	29	67
ecosyn®-grip BN 219	Fonte grise R _m ~150 à 450 N/mm²	0,11 à 0,25	10	17	21	47
Classe de qualité 8.8	Alliage d'aluminium tendre non trempé	0,22 à 0,40	17	29	36	87
	Alliage d'aluminium dur trempé	0,19 à 0,35	14	25	33	76
			~Force de préce	ontrainte F _M [kN]	1)	
			7	9,9	18,1	28,8

¹) Valeurs indicatives avec éléments d'assemblage sans revêtement pour obtenir la précontrainte F_M [kN] sur un matériau en acier d'une résistance à la traction de ≤ 800 N/mm²

Montage

Les valeurs indicatives pour les précontraintes possibles sont à vérifier en pratique.

Couples de serrage ecosyn®-SEF

Couples de serrage M_A [Nm] et précontraintes de montage F_M [kN] résultantes pour écrous ecosyn®-grip lors d'une utilisation à 90% de la limite d'élasticité R_{0.0.2}

Désignation écrou	Matériau de vis	Coefficient de	Valoure indi	catives max.	dae countae	do corrado M	[Mm]	
Designation ecrou	Wateriau de vis	frottement ~µ _{tot}	M4	M5	M6	M8	M10	M12
Classe de qualité	Acier classe de qualité 8.8	0,14 à 0,24	3,3	6,5	11,3	27,3	54	93
ecosyn®-SEF				~Force de	précontraint	e de montaç	ge F _M [kN] ¹⁾	
BN 33855 (Type-L) Classe de qualité 8			4,3	7	9,9	18,1	28,8	41,9
ecosyn®-SEF BN 33966 (Type-M) Classe de qualité 8								

¹⁾ Valeurs indicatives avec éléments d'assemblage sans revêtement pour obtenir la précontrainte de montage F_M [kN]

Montage

Les valeurs indicatives pour les précontraintes possibles sont à vérifier en pratique.

Valeurs indicatives des couples de serrage pour les rondelles de sécurité à effet de cames, collées par paires NORD-LOCK®

Les valeurs de couple de serrage

recommandées sont basées sur des tests de laboratoire et sont à vérifier pour l'application respective et à approuver. Dans certaines conditions d'utilisation des coefficients de frottement inférieurs peuvent être atteints!

Valeurs indicatives des couples de serrage selon ISO 16047 basées sur de la pâte de graphite Molykote® 1000 pour les rondelles de sécurité NORD-LOCK® revêtues de lamelles de zinc assemblées avec des vis 8.8, 10.9, 12.9, et aciers austénitiques

NORD-LOCK®								
Classe de qualité	Type de lubrifiant	Coefficients de fr	pefficients de frottement					
	Dans le filetage et sous la tête	μFiletage min	μFiletage max	μTête min	μTête max	μtot min	µtot max	
8.8	Molykote® 1000	0,10	_	0,13	_	0,12	0,20	
10.9	Molykote® 1000	0,10	-	0,11	_	0,11	0,18	
12.9	Molykote® 1000	0,10	-	0,10	_	0,11	0,17	
A2-70, A4-70 A2-80, A4-80	Molykote® 1000	0,10	-	0,08	-	0,10	0,16	

NORD-I	LOCK®												
Classe de qualité	Matériau de l'élément de construction	Type de lubrifiant	Coefficients de frottement µtot	M5x0,8	M6x1	M8x1,25	M10x1,5	M12x1,75	M16x2	M20x2,5	M24x3	M27x3	M30x3,5
		Dans le filetage et sous la tête											
8.8	Acier	Molykote® 1000	0,12 à 0,20	Couple	de serra	ge M _{A max} [Nm]						
	Rm < 800 N/mm ²	2		5,9	10,1	24,6	48	84	206	415	714	1050	1420
		and the return fields		Précont	rainte m	ax. F _M [kN]							
	frottement le plus			7,2	10,2	18,6	29,6	43	81	130	188	246	300
10.9	Acier	Molykote® 1000	0,11 à 0,18	Couple	Couple de serrage M _{A max} [Nm]								
	Rm ≥ 800 N/mm ²		8,1	14	33,9	66,8	115	283	554	953	1400	1900	
	Précontrainte maximale lors du coefficient de		ficient de	Précont	rainte m	ax. F _M [kN]		•			•		
	frottement le plus faible			10,7	15,2	27,7	44	64,1	120	188	270	355	432
		Molykote® 1000	Molykote® 1000 0,11 à 0,17 C	Couple de serrage M _{A max} [Nm]									
	Rm ≥ 800 N/mm ²			9,4	16,4	39,7	78,2	134,9	331	648	1120	1640	2230
	Précontrainte max		ficient de	Précont	rainte m	ax. F _M [kN]							
	frottement le plus	faible		12,5	17,7	32,4	51,5	75	141	220	317	416	506
A2-70	Acier austéni-	Molykote® 1000	0,10 à 0,16	Couple	de serra	ige M _{A max} [Nm]						
A4-70	tique 100 – 200 HV			3,6	6,3	15,2	29,9	51,6	126	247	425	623	848
	Précontrainte max		ficient de	Précont	rainte m	ax. F _M [kN]					•		
	frottement le plus	faible		5,2	7,3	13,4	21,3	31,1	58,3	91,1	131	172	209
A2-80 A4-80	Acier austéni- tique	Molykote® 1000	0,10 à 0,16	Couple	de serra	ige M _{A max} [Nm]			,			
714 00	200 – 300 HV			4,8	8,4	20,2	39,9	68,7	169	330	567	831	1131
	Précontrainte max		ficient de	Précont	rainte m	ax. F _M [kN]							
	frottement le plus	faible		6,9	9,8	17,9	28,5	41,4	77,7	121	175	229	279

F.061

Т

Précontraintes et couples de serrage

La précontrainte de montage et le couple de serrage sont basés sur les conditions suivantes:

- Vis à tête hexagonale selon ISO 4014 ou ISO 4017
- Vis à tête cylindrique à six pans creux selon ISO 4762
- Diamètre du trou de passage selon ISO 273-m
- v=0,9 pour les vis à tige pleine avec filetage métrique selon ISO 68 ou ISO 724

La dispersion du couple appliqué, qui varie en fonction de la méthode de serrage choisie, doit être prise en compte lors de la définition du couple appliqué.

Les indications fournies sont des valeurs de référence qui correspondent à l'état initial du matériau, à l'usage prévu et à l'utilisation en état lubrifié.

Selon le type de contrainte mécanique et dynamique, les conditions de surface varient en fonction de la température, de la pression et de la vitesse d'assemblage, et peut influencer les conditions de frottement des composants.

Les coefficients de frottement selon ISO 16047 pour les vis lubrifiées avec graisse MOLYKOTE® 1000 sont donnés pour le premier serrage, à condition que la surface du filetage interne corresponde à celle de la vis. Pour toutes les autres combinaisons de surfaces, les coefficients de frottement doivent être vérifiés.

Dans quelques applications exceptionnelles, dans lesquelles les éléments de construction contraints présentent une dureté élevée et une faible rugosité de surface, un glissement pendant le serrage peut avoir lieu contre la pièce contrainte et réduire le coefficient de frottement (µtête).

Clause de non-responsabilité

Les valeurs de couple indicatives fournies dans cette directive ont été vérifiées dans des laboratoires d'essai et représentent des exemples de configuration. Cette directive est destinée à fournir une aide et un guide servant au calcul des valeurs de couple, et doit être utilisée dans ce contexte. Tout calcul reposant sur cette directive doit être vérifié et testé avant utilisation. Nord-Lock International AB et ses filiales n'assument aucune responsabilité concernant les travaux ou les constructions réalisés à partir de calculs reposant sur cette directive.

Le contenu de cette documentation ne doit pas être interprété comme une autorisation ou une recommandation visant à enfreindre les droits de brevets ou marques déposées de NORD-LOCK®, www.nord-lock.com.

Torquelator de Nord-Lock

Le calculateur en ligne calcule la précontrainte et le couple de serrage des assemblages vissés sécurisés par les rondelles de sécurité à effet de cames Nord-Lock. Choisissez entre deux méthodes de calcul différentes (VDI 2230 ou Kellermann et Klein), sélectionnez la taille de vis (métrique et pouce), la classe de qualité et le lubrifiant pour obtenir la valeur du couple de serrage.

F062

Vis à haute résistance pour la construction métallique (garnitures HV)

Avec le décret sur les produits de construction 305/2011 entré en vigueur, une déclaration de prestations pour le sigle CE est maintenant nécessaire pour certains produits de construction spécifiques. Le décret (BauPVO) remplace ainsi la Directive produits de construction en vigueur jusqu'à présent (Directive 89/106/CEE). La DIN 18800-7 pour l'exécution d'éléments porteurs en acier et les règles pour la qualification des constructeurs sont remplacées par EN 1090. EN 1090 définit les exigences de preuve de conformité des charpentes métalliques qui sont mises en circulation comme produits de construction.

Les exigences individuelles envers les éléments d'assemblage sont régulées par les normes harmonisées EN 15048 et EN 14399 et suivantes pour la charpente métallique ou la construction métallique. Il convient de souligner expressément que le sigle CE ne doit être obligatoirement respecté que si les éléments d'assemblage dans un ouvrage sont utilisés pour y rester de manière permanente et affectent de manière décisive les exigences de base envers l'ouvrage.

Les éléments d'assemblage avec des exigences concrètes envers la technique de construction doivent dès la demande/commande contenir la spécification correspondante en ce qui concerne la norme harmonisée ou la déclaration de prestation.

Les classes de qualité des vis et des écrous et, le cas échéant, les états de traitement des surfaces doivent être déterminés en commun avec toutes les possibilités de sélection qui sont homologuées par la norme produit.

Catégories d'assemblages vissés selon EN 1993-1-8

Assembl	Assemblages par cisaillement							
Cat. A	Assemblage par cisaillement et compression diamétrale	Précontrainte pas requise selon la norme						
Cat. B	Assemblage résistant au glissement en état limite de la capacité d'utilisation	Précontrainte requise						
Cat. C	Assemblage résistant au glissement en état limite de la capacité portante	Précontrainte requise						

Assembl	Assemblages par traction							
Cat. D	Pas précontraint	Précontrainte pas requise selon la norme						
Cat. E	Précontraint	Précontrainte requise						

Composition de garnitures à haute résistance pour les assemblages vissés dans la construction métallique selon EN 14399

	de garniture pour les mblages vissés	Système HR	ystème HR				Système HV		Système HRC	
Exige	ences générales	EN 14399-1								
	opriation pour la ontrainte	EN 14399-2 et	EN 14399-2 et, si nécessaire, contrôles supplémentaires définis dans la norme du produit							
Vis e	t écrou	EN 14399-3		EN 14399-7		EN 14399-4 EN 14399-8		EN 14399-10		
	Vis	HR8.8	HR10.9	HR8.8	HR10.9	HV10.9	HVP10.9	HRC10.9	HRC10.9	
Marquage	Ecrou	HR8 ou HR10	HR10	HR8 ou HR10	HR10	HV10		HR10	HRD10	
Rond	delle(s)	EN 14399-5 ¹⁾ ou EN 14399-6	5	EN 14399-5 ¹⁾ ou EN 14399-6		EN 14399-6		EN 14399-6	EN 14399-5 ¹⁾ ou EN 14399-6	
Marq	uage	H ou HR ²⁾		H ou HR ²⁾		H ou HV ²⁾		H ou HR ²⁾	H ou HR ²⁾ ou HD ³⁾	

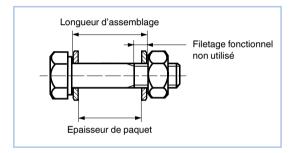
¹⁾ Les rondelles selon EN 14399-5 peuvent uniquement être utilisées sous l'écrou.

© Bossard. F-fr-2023

www.bossard.com

²⁾ Selon le choix du fabricant.

³⁾ Repérage obligatoire uniquement pour les rondelles avec un diamètre extérieur agrandi selon EN 14399-5.


Relation à la norme DIN/EN

Norme	Sommaire	Dimension	Résistance	Remplacé par
DIN 6914	Vis HV	M12-M36	10.9	EN 14399-4
DIN 6915	Ecrous HV	M12-M36	10	EN 14399-4
DIN 6916	Rondelles HV rondes	13-37	300-370 HV	EN 14399-6
DIN 6917	Plaquettes obliques (pour profils en I)	13-37	295-350 HV	reste inchangée
DIN 6918	Plaquettes obliques (pour profils en U)	13-37	295-350 HV	reste inchangée
DIN 7999	Rondelles élastiques HV	M12-M30	10.9	EN 14399-8

Longueur d'assemblage

Dans EN 14399-4, la longueur d'assemblage est mesurée entre la surface d'appui de la tête de vis et de l'écrou. La distance entre les rondelles est désormais spécifiée comme épaisseur de paquet. Il convient de tenir compte à ce que le filetage fonctionnel non utilisé soit suffisant.

Pour les vis aptes à la précontrainte selon EN 14399-3, EN 14399-7 et EN 14399-10, au moins quatre pas de filet complets (outre l'amorce de filetage) doivent rester libres entre la surface portante de l'écrou et la partie lisse de la tige.

Méthode de serrage

Garnitures pour les assemblages vissés non précontraints

Les garnitures pour les assemblages vissés non précontraints en aciers non alliés, alliés et aciers inoxydables austénitiques doivent satisfaire la norme EN 15048-1.

Les garnitures selon EN 14399-1 peuvent également être utilisées pour les assemblages vissés non précontraints.

Garnitures pour les assemblages vissés précontraints

Les systèmes HR, HV et HRC comprennent les assemblages vissés à haute résistance aptes à la précontrainte. Elles doivent répondre aux exigences de la norme EN 14399-1 et à la norme européenne correspondante.

Les vis en acier inoxydable ne doivent pas être utilisées dans des applications aptes à la précontrainte sauf régulation contraire. Si elles sont utilisées à cet effet, elles doivent alors être traitées comme des moyens d'assemblage particuliers.

Sauf régulation contraire, il faut prendre comme valeur nominale pour la force minimale de précontrainte F_{n.C}:

 $F_{p,C} = 0.7 \text{ x } f_{ub} \text{ x } A_s, f_{ub}$ étant la résistance nominale du matériau de vis et A_s la surface de section de serrage de la vis.

Méthode de serrage pour les classes k

Méthode de serrage	Précontrainte	Classes k
Méthode du couple	F _{p,C}	K2
Méthode de précontrainte combinée	F _{p,C}	K1 (ou K2)
Méthode de précontrainte modifiée	F _{p,C*}	K1

Pour les garnitures HV fournies, on définit ce qu'on appelle des classes k, qui représentent une indication indirecte de l'état de valeur de friction présent de la garniture. La classe K1 p. ex. spécifie l'état de lubrification des écrous comme élément décisif d'une garniture, pour permettre d'atteindre les forces de précontrainte minimales par un processus fiable. Par conséquent, le serrage doit en principe être effectué du côté de l'écrou. Les classes k et le cas échéant également les couples de serrage pour la méthode de précontrainte selon EN 1993-1-8/NA pour F_{n C*} sont indiqués sur l'emballage. Tous les éléments d'une garniture HV des lots de productions individuelles d'un fabricant sont ainsi combinables sans restriction et sont livrés dans des emballages séparés. Les couples de serrage correspondants et les forces de précontrainte sont répertoriés dans EN1993-1-8/NA.

F064

Forces de précontrainte et couples de serrage pour les assemblages vissés HV 10.9 selon EN 14399-4 / EN 14399-6 – classe k K1 selon EN 14399-1

Norme applicable	Méthodes de serrage	Particularités
EN 1090-2	Méthode du couple	Autorisé uniquement avec test K2 en Europe (à l'exception
		de l'Allemagne)
EN 1090-2	Méthode combinée précontrainte/angle de rotation	Uniquement avec K1 ou K2
DIN EN 1993-1-8/NA	Méthode du couple modifié et combiné avec précontrainte	Si la vis n'est pas serrée avec la pleine force de précon-
	modifiée	trainte

Méthode du couple

Les vis doivent être serrées avec un outil dynamométrique qui offre une zone de travail adaptée. Les visseuses manuelles ou automatiques peuvent être utilisées.

Méthode de précontrainte combinée avec couples de serrage préliminaires et angle de rotation supplémentaire pour la classe de qualité 10.9 (EN 1090)

Dans la méthode combinée de précontrainte pour garnitures HV 10.9 et avec une classe k K1 selon EN 1090-2, pour atteindre la force de précontrainte minimale F_{p,C}, un couple de préserrage correspondant aux valeurs du tableau est appliqué dans un premier temps. Cette première phase doit être achevée pour toutes les vis dans un même assemblage avant d'entamer la seconde phase préconisée par angle de rotation.

Forces de précontrainte et couples de serrage préconisés (EN 1090)

EN 1090-2		Diamètre de vis en mm							
		12	16	20	22	24	27	30	36
Force de précontrainte standard selon F _{p,C}	[kN]	59	110	172	212	247	321	393	572
Couple de référence (classe k K1) M _{r,1}	[Nm]	92	229	447	606	771	1127	1533	2677
Couple préliminaire = 0,75 M _{r,1}	[Nm]	67	165	322	439	557	815	1107	1935

Angle de rotation préconisé pour la méthode combinée de précontrainte sur les garnitures de la classe de qualité 10.9 (EN 1090)

Epaisseur nominale «t» des pièces à combiner (y compris toutes les tôles de calage et les rondelles) d = diamètre de la vis	Angle de rotation supplémentaire à appliquer, au cours de la seconde phase de serrage
< 2 d	60°
2 d ≤ t < 6 d	90°
6 d ≤ t ≤ 10 d	120°

Remarque: Lorsque la surface sous la tête de vis ou de l'écrou (en tenant compte des rondelles biaises, le cas échéant) n'est pas perpendiculaire à l'axe de la vis, il convient de déterminer par des essais l'angle de rotation requis.

Т

Précontraintes et couples de serrage

Méthode du couple modifiée (DIN EN 1993-1-8/NA)

La procédure de serrage avec la méthode du couple modifiée se compose généralement en deux phases de serrage. La première phase pour définir le couple de préserrage de max. 0,75 x le couple de référence modifié et devra être appliqué pour toutes les vis d'un assemblage, avant d'entamer la seconde phase de serrage. Avec le couple de référence modifié du tableau, la force de précontrainte de consigne F_{p,C*} est atteinte lors de la deuxième étape.

Méthode de précontrainte combinée modifiée (DIN EN 1993-1-8/NA)

Dans la méthode de précontrainte combiné modifié, pour appliquer la précontrainte de consigne F_{p,C*}, un couple de préserrage est appliqué à l'aide de la méthode du couple. Cette première phase doit être achevée pour toutes les vis dans un même assemblage avant d'entamer la seconde phase de serrage conformément aux indications d'angle de rotation supplémentaire.

Forces de précontrainte et couples de serrage préconisés (DIN EN 1993-1-8/NA)

DIN EN 1993-1-8/NA		Diamètre de vis en mm								
		12	16	20	22	24	27	30	36	
Force de précontrainte modifiée F _{p,C*}	[kN]	50	100	160	190	220	290	350	510	
Couple de référence modifié (classe k K1) M _A	[Nm]	100	250	450	650	800	1250	1650	2800	
Couple de rotation supplémentaire	[Nm]	75	190	340	490	600	940	1240	2100	

Angle de rotation supplémentaire pour la méthode combinée de précontrainte sur les garnitures de la classe de résistance 10.9 (DIN EN 1993-1-8/NA)

Epaisseur nominale «t» des pièces à combiner (y compris toutes fourrures et rondelles) d = diamètre de la vis	Angle de rotation supplémentaire à appliquer, au cours de la seconde phase de serrage
<2 d	45°
2 d ≤ t < 6 d	60°
6 d ≤ t ≤ 10 d	90°

Remarque: Lorsque la surface sous la tête de vis ou de l'écrou (en tenant compte des rondelles biaises, le cas échéant) n'est pas perpendiculaire à l'axe de la vis, il convient de déterminer par des essais l'angle de rotation requis.