Umgang mit den Richtwerten

Vorspannkräfte und Anziehdrehmomente

Dieses Vorgehen kann die Berechnung nach VDI 2230 nicht ersetzen und entspricht nicht dem Stand der Technik. Es kann aber zumindest einen Schraubenbruch bei der Montage nicht berechneter Schrauben verhindern. Hauptursache für solche Brüche sind niedrigere Reibungszahlen als angenommen.

Schritt 1: Reibungszahl $\mu_K = \mu_G$

Bei Unsicherheit über den genauen **Oberflächen- und Schmierzustand von Gewinde und Auflagefläche** muss die kleinste in der Praxis (z. B. Erstmontage, Wartung, Reparatur) auftretende Reibungszahl μ_K = μ_G aus Tabelle **Seite 57** gewählt werden.

Beispiel:

Wahl für Schraube und Mutter mit Oberflächenzustand galvanisch verzinkt

Reibungszahl $\mu_K = \mu_G = 0.14 - 0.24$, kleinster Wert $\mu_K = \mu_G = 0.14$

Schritt 2: Montage-Anziehdrehmoment MA max

Dieses maximal zulässige Anziehdrehmoment bei einer 90%-igen Ausnutzung der Streckgrenze ($R_{\rm eL}$) resp. der 0,2%-Dehngrenze ($R_{\rm p0,2}$) finden Sie in den Tabellen ab **Seite 61**. Dies ist das maximale Montage-Anziehdrehmoment bei Verwendung moderner Schrauber mit Drehmomentstreuung von max. 5%.

Beispiel:

Sechskantschraube ISO 4017, M12, Festigkeitsklasse 8.8, verzinkt. Suchen Sie auf **Seite 62** bei «Gewinde» M12 die Zeile $\mu_K = \mu_G = 0,14$. Finden Sie in dieser Zeile in der rechten Tabellenhälfte «Maximale Anziehdrehmomente» in Spalte «Festigkeitsklasse 8.8» das max. Montage-Anziehdrehmoment $M_{A\,max} = 93$ Nm

Schritt 3: Maximale Montage-Vorspannkraft F_{M max}

Mit dem Anziehdrehmoment $M_{A\,max}$ können Sie in derselben Tabelle auch die resultierende maximale Montage-Vorspannkraft $F_{M\,max}$ ablesen.

Beispiel:

Sie finden in der linken Tabellenhälfte in Spalte «Festigkeitsklasse 8.8» und auf der Zeile «M12/0,14» die resultierende maximale Montage-Vorspannkraft $F_{M\,max}=41,9~kN$

Schritt 4: Minimale Montage-Vorspannkraft F_{M min}

Die minimale Vorspannkraft erhalten Sie aus der maximalen Montage-Vorspannkraft mit Hilfe des Anziehfaktors α_A – siehe **Seite 59**.

Beispiel:

Wird mit einem handelsüblichen modernen Drehmomentschlüssel gleichmässig angezogen und die Reibungszahl geschätzt, muss mit einem Anziehfaktor $\alpha_A = 1,6$ bis 2,0 gerechnet werden – siehe Tabelle auf **Seite 59**. Ist der Schlüssel, – wie im Beispiel angenommen – signalgebend, gilt der höhere Wert 2,0.

Da die kurze Schraube M12x40 sich jedoch mit einem kleinen Drehwinkel anziehen lässt und eine relativ steife Verbindung ergibt, kann dieser Wert etwas niedriger gewählt werden.

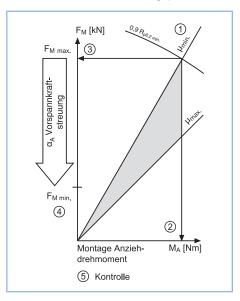
Deshalb angenommen $\alpha_A = 1.8$

Minimale zu erwartende Montage-Vorspannkraft:

 $F_{M \, min} = F_{M \, max}/\alpha_A = 41,9 \; kN/1,8$

 $F_{M min} = 23,3 kN$

Schritt 5: Kontrolle


Kontrolle mit Berechnungen nach VDI 2230 ist Stand der Technik und wird für eine sichere Auslegung empfohlen

- Genügt die minimale Montage-Vorspannkraft F_{M min} für die in der Praxis auftretenden Maximalkräfte?
- Sind die Flächenpressungen in den Auflageflächen nicht zu hoch?
- Wie gross ist die Restklemmkraft unter Betriebsbedingungen?
- Wird die Dauerfestigkeit der Schraube im Betriebseinsatz nicht überschritten?

Wird das Anziehdrehmoment M_A aus irgendwelchen Gründen tiefer angenommen als der Tabellenwert, werden sich auch die Montage-Vorspannkraft F_M und die daraus abgeleitete minimale Vorspannkraft $F_{M\,\text{min}}$ um diesen Prozentsatz vermindern! Ob die Verbindungseigenschaften dann noch genügen, muss der Anwender prüfen.

Mögliche Gründe für ein solches Vorgehen:

- unvorhersehbare tiefere Reibungszahlen als angenommen und damit Risiko für einen Schraubenbruch bei der Montage
- eventuelle Verwendung ungenauerer Drehmomentschlüssel als vorgegeben und damit ähnliches Risiko für ein Versagen
- Klemmteile, die sich unvorhergesehen deformieren könnten oder Ähnliches.
- ungenügende Fachkenntnisse des Montagepersonals

Richtwerte für metrisches Regelgewinde VDI 2230

Angaben in Anlehnung an VDI 2230, Ausgabe 2015: Maximale zulässige Anziehdrehmomente und resultierende maximale Vorspannkräfte für Sechskantschrauben ISO 4014 – 4018, Innensechskantschrauben ISO 4762 und für Schrauben mit analogen Kopffestigkeiten und Kopfauflageflächen der Festigkeitsklassen 3.6 bis 12.9 bei einer 90%-igen Ausnutzung der Streckgrenze $R_{\rm eL}/0,2\%$ -Dehngrenze $R_{\rm p0,2}$ - Bohrungen nach ISO 273-mittel.

Die Tabelle zeigt zulässige Maximalwerte und enthält keine weiteren Sicherheitsfaktoren. Sie setzt die Kenntnis der einschlägigen Richtlinien und Auslegungskriterien voraus.

Richtwerte Tabellen Seite 61 und 62

Die Richtwerte sind etwas höher als in der früheren Version VDI 2230, Ausgabe 1986, da unter Beachtung bislang nicht genutzter Reserven die Schraubenfestigkeit durch eine höhere Montage-Vorspannkraft besser ausgenutzt wird.

Nachweisrechnung notwendig! VDI 2230, Ausgabe 2015

Anziehdrehmoment Tabellen Seite 61 und 62

 $\mbox{Mit } M_A = \mbox{\bf F}_M \cdot X \mbox{ kann das Anziehdrehmoment zu jeder anderen} \\ \mbox{Vorspannkraft errechnet werden.}$

O	Rei-	Maxima	ale Vorspa	nnkraft F	_{I max} [N]				Maxima	les Anziel	hdrehmor	nent M _{A m}	nax [Ncm]			
ewinde	bungs- zahl	Festigk	eitsklasse	en nach IS	O 898/1				Festigke	eitsklasse	n nach IS	O 898/1				Umdre- hungs- faktor X
ဗီ	$\mu_{K} = \mu_{G}$	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	다 그 라
M1,6	0,10	176	235	294	470	627	882	1058	4,2	5,7	7,1	11,3	15,1	21,2	25,5	0,024
	0,12	171	228	285	455	607	854	1025	4,7	6,3	7,9	12,6	16,9	23,7	28,5	0,028
	0,14	165	220	275	441	588	826	992	5,2	6,9	8,7	13,9	18,5	26	31,2	0,032
M2	0,10	292	390	487	779	1039	1461	1754	9	11,9	14,9	23,8	31,7	44,5	53,5	0,031
	0,12	283	378	472	756	1008	1417	1701	10	13,3	16,7	26,7	35,6	50	60	0,035
	0,14	274	366	457	732	976	1373	1647	11	14,7	18,4	29,4	39,2	55	66	0,040
M2,5	0,10	485	647	809	1294	1725	2426	2911	18	24	30	49	65	91	109	0,037
	0,12	471	628	785	1257	1676	2356	2828	21	27	34	55	73	103	123	0,044
	0,14	457	609	762	1219	1625	2285	2742	23	30	38	60	81	113	136	0,050
M3	0,10	726	968	1210	1936	2582	3631	4357	32	42	53	84	112	158	190	0,044
	0,12	706	941	1177	1883	2510	3530	4236	36	48	60	95	127	179	214	0,051
	0,14	685	914	1142	1827	2436	3426	4111	40	53	66	105	141	198	237	0,058

O	Rei-	Maxima	ale Vorspa	nnkraft F	M max [kN]]			Maxim	ales Anzi	ehdrehmoi	ment M _A	max [Nm]			Umdre- hungs- faktor X
Gewinde	bungs- zahl	Festigk	eitsklass	en nach IS	O 898/1	I			Festigl	ceitsklass	sen nach IS	O 898/	1			
පී	$\mu_K = \mu_G$	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	ᇍ로
M4	0,08	1,3	1,74	2,17	3,48	4,6	6,8	8,0	0,63	0,84	1,05	1,68	2,3	3,3	3,9	0,50
	0,10	1,26	1,68	2,10	3,36	4,5	6,7	7,8	0,73	0,97	1,21	1,94	2,6	3,9	4,5	0,58
	0,12	1,22	1,63	2,04	3,26	4,4	6,5	7,6	0,82	1,09	1,37	2,19	3,0	4,6	5,1	0,67
	0,14	1,19	1,58	1,98	3,17	4,3	6,3	7,4	0,91	1,21	1,51	2,42	3,3	4,8	5,6	0,76
M5	0,08	2,12	2,83	3,54	5,67	7,6	11,1	13,0	1,2	1,65	2,06	3,3	4,4	6,5	7,6	0,58
	0,10	2,06	2,74	3,43	5,48	7,4	10,8	12,7	1,4	1,9	2,4	3,8	5,2	7,6	8,9	0,70
	0,12	2,00	2,67	3,33	5,33	7,2	10,6	12,4	1,6	2,2	2,7	4,3	5,9	8,6	10,0	0,81
	0,14	1,94	2,59	3,23	5,18	7,0	10,3	12,0	1,8	2,4	3,0	4,8	6,5	9,5	11,2	0,93
M6	0,08	3,00	4,01	5,01	8,02	10,7	15,7	18,4	2,1	2,8	3,6	5,7	7,7	11,3	13,2	0,72
	0,10	2,90	3,87	4,84	7,74	10,4	15,3	17,9	2,5	3,3	4,1	6,6	9,0	13,2	15,4	0,86
	0,12	2,82	3,76	4,71	7,53	10,2	14,9	17,5	2,8	3,7	4,7	7,5	10,1	14,9	17,4	0,99
	0,14	2,74	3,65	4,57	7,31	9,9	14,5	17,0	3,1	4,1	5,2	8,3	11,3	16,5	19,3	1,14
M8	0,08	5,4	7,3	9,1	14,6	19,5	28,7	33,6	5,2	6,9	8,6	13,8	18,5	27,2	31,8	0,95
	0,10	5,3	7,1	8,8	14,2	19,1	28,0	32,8	6,0	8,0	10,0	16,1	21,6	31,8	37,2	1,13
	0,12	5,15	6,9	8,6	13,8	18,6	27,3	32,0	6,8	9,1	11,3	18,2	24,6	36,1	42,2	1,32
	0,14	5,0	6,7	8,3	13,4	18,1	26,6	31,1	7,5	10,1	12,6	20,1	27,3	40,1	46,9	1,51

<u>o</u>	Rei-	Maximale Vorspannkraft F _{M max} [kN] Festigkeitsklassen nach ISO 898/1								Maximales Anziehdrehmoment M _{A max} [Nm]						╛
Gewinde	bungs- zahl	Festigk	eitsklasse	en nach IS	O 898/1				Festigl	eitsklass	en nach IS	O 898/1	l			Umdre- hungs-
	$\mu_K = \mu_G$	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	5 2 3
Л 10	0,08	8,7	11,6	14,5	23,2	31,0	45,6	53,3	10,2	13,6	17,0	27,2	36	53	62	1,16
	0,10	8,4	11,3	14,1	22,5	30,3	44,5	52,1	12	16,1	20,1	32,3	43	63	73	1,42
	0,12	8,2	11,0	13,7	21,9	29,6	43,4	50,8	13,7	18,3	22,9	36,5	48	71	83	1,65
	0,14	8,0	10,7	13,3	21,3	28,8	42,2	49,4	15,2	20,3	25,3	40,6	54	79	93	1,89
/112	0,08	12,7	16,9	21,1	33,8	45,2	66,3	77,6	17	23	29	47	63	92	108	1,39
	0,10	12,3	16,4	20,5	32,8	44,1	64,8	75,9	20	27	34	55	73	108	126	1,65
	0,12	12,0	16,0	20,0	32,0	43,0	63,2	74,0	23	31	39	62	84	123	144	1,94
	0,14	11,6	15,5	19,4	31,1	41,9	61,5	72,0	26	34	43	69	93	137	160	2,22
Л14	0,08	17,4	23,2	29,0	46,4	62,0	91,0	106,5	28	37	46	74	100	146	171	1,60
	0,10	16,9	22,5	28,2	45,1	60,6	88,9	104,1	33	44	55	88	117	172	201	1,94
	0,12	16,5	21,9	27,4	43,9	59,1	86,7	101,5	37	50	62	100	133	195	229	2,26
	0,14	16,0	21,3	26,7	42,7	57,5	84,4	98,9	41	55	69	111	148	218	255	2,58
/116	0,08	23,8	31,7	39,7	63,5	84,7	124,4	145,5	42	57	71	114	153	224	262	1,80
	0,10	23,2	30,9	38,6	61,8	82,9	121,7	142,4	50	67	84	134	180	264	309	2,17
	0,12	22,6	30,1	37,6	60,2	80,9	118,8	139,0	57	76	96	153	206	302	354	2,54
	0,12	22,0	29,3	36,6	58,6	78,8	115,7	135,4	64	85	107	171	230	338	395	2,92
M18	0,14	29,1	38,8	48.5	77,6	107	152	178	60	80	100	160	220	314	367	2,06
	0,00	28,2	37,7	47,1	75,3	107	149	174	70	93	117	187	259	369	432	2,48
	0,10	27,5	36,7	45,8	73,4	102	145	170	80	106	133	212	295	421	492	2,90
	0,12	26,7	35,7	44,6	71,3	99	141	165	89	118	148	236	329	469	549	3,32
Л 20	0,14	37,2	49,6	62,0	99,2	136	194	227	83	111	139	223	308	438	513	2,26
/120		_				_	_			_		_	_			
	0,10	36,2	48,3	60,3	96,5	134	190	223	98	131	164	262	363	517	605	2,71
	0,12	35,3	47,0	58,8	94,1	130	186	217	112	150	187	300	415	592	692	3,18
100	0,14	34,3	45,8	57,2	91,6	127	181	212	125	167	209	334	464	661	773	3,65
<i>l</i> 122	0,08	46,3	61,7	77,2	123,5	170	242	283	113	151	189	303	417	595	696	2,46
	0,10	45,1	60,1	75,2	120,3	166	237	277	132	176	220	353	495	704	824	2,95
	0,12	44,0	58,7	73,4	117,4	162	231	271	151	202	252	403	567	807	945	3,46
	0,14	42,9	57,1	71,4	114,3	158	225	264	172	225	284	454	634	904	1057	3,97
Л24	0,08	53,6	71,4	89,3	142,9	196	280	327	144	192	240	385	529	754	882	2,70
	0,10	52,1	69,5	86,9	139,0	192	274	320	170	222	280	450	625	890	1041	3,25
	0,12	50,8	67,7	84,7	135,5	188	267	313	193	257	322	515	714	1017	1190	3,80
	0,14	49,4	65,9	82,4	131,8	183	260	305	215	287	359	574	798	1136	1329	4,36
Л27	0,08	70,2	93,6	117,0	187,2	257	367	429	210	280	351	561	772	1100	1287	3,00
	0,10	68,4	91,2	114,0	182,4	252	359	420	248	331	414	662	915	1304	1526	3,63
	0,12	66,7	89,0	111,2	178,0	246	351	410	284	379	474	759	1050	1496	1750	4,26
	0,14	65,0	86,7	108,3	173,3	240	342	400	318	424	530	848	1176	1674	1959	4,89
/ 30	0,08	85,5	114,0	142,5	228,0	313	446	522	287	383	478	766	1053	1500	1755	3,36
	0,10	83,2	111,0	138,7	222,0	307	437	511	338	450	563	901	1246	1775	2077	4,06
	0,12	81,2	108,3	135,3	216,5	300	427	499	386	515	644	1031	1428	2033	2380	4,76
	0,14	79,0	105,3	131,7	210,8	292	416	487	431	575	719	1151	1597	2274	2662	5,46
/133	0,08	106,1	141,5	176,9	283,1	389	554	649	385	514	643	1029	1415	2015	2358	3,64
	0,10	103,5	138,0	172,5	276,0	381	543	635	456	608	760	1216	1679	2392	2799	4,41
	0,12	101,0	134,7	168,4	269,4	373	531	621	523	697	871	1395	1928	2747	3214	5,17
	0,14	98,4	131,2	164,0	262,5	363	517	605	585	780	975	1560	2161	3078	3601	5,95
//36	0,08	124,8	166,4	208,0	332,8	458	652	763	497	663	829	1327	1825	2600	3042	3,99
	0,10	121,6	162,1	202,7	324,3	448	638	747	587	783	979	1566	2164	3082	3607	4,83
	0,12	118,7	158,2	197,8	316,4	438	623	729	672	897	1121	1793	2482	3535	4136	5,67
	0,14	115,6	154,1	192,6	308,1	427	608	711	752	1002	1253	2005	2778	3957	4631	6,51
139	0,08	149,5	199,4	249,2	398,8	548	781	914	640	854	1067	1708	2348	3345	3914	4,28
-	0,10	145,9	194,5	243,1	389,0	537	765	895	758	1011	1264	2022	2791	3975	4652	5,20
	0,12	142,4	189,9	237,4	379,8	525	748	875	870	1160	1450	2321	3208	4569	5346	6,11
	0,14	138,8	185,0	231,3	370,0	512	729	853	974	1299	1624	1-0-1	3597	.500	100.10	7,02

Richtwerte für metrisches Feingewinde VDI 2230

Angaben in Anlehnung an VDI 2230, Ausgabe 2015: Vorspannkräfte/Anziehdrehmomente für Schaftschrauben der Festigkeitsklasse 8.8 bis 12.9 bei einer 90 %-igen Ausnutzung der Dehngrenze $R_{p\,0,2}$.

Die Tabelle berücksichtigt keine Sicherheiten und setzt die Kenntnis der Auslegungskriterien voraus.

Gewinde	Reibungszahl	Vorspannkra	ift F _{M max} [kN]		Anziehdreh	moment M _{A max} [Nm]
		Festigkeitsk	lasse nach ISO 898	3/1	Festigkeits	dasse nach ISO 89	3/1
	$\mu_K = \mu_G$	8.8	10.9	12.9	8.8	10.9	12.9
Л8х1	0,08	21,2	31,1	36,4	19,3	28,4	33,2
	0,10	20,7	30,4	35,6	22,8	33,5	39,2
	0,12	20,2	29,7	34,7	26,1	38,3	44,9
	0,14	19,7	28,9	33,9	29,2	42,8	50,1
И10x1,25	0,08	33,1	48,6	56,8	38	55	65
	0,10	32,4	47,5	55,6	44	65	76
	0,12	31,6	46,4	54,3	51	75	87
	0,14	30,8	45,2	52,9	57	83	98
M12x1,25	0,08	50,1	73,6	86,2	66	97	114
	0,10	49,1	72,1	84,4	79	116	135
	0,12	48,0	70,5	82,5	90	133	155
	0,14	46,8	68,7	80,4	101	149	174
M14x1,5	0,08	67,8	99,5	116,5	104	153	179
	0,10	66,4	97,5	114,1	124	182	213
	0,12	64,8	95,2	111,4	142	209	244
	0,14	63,2	92,9	108,7	159	234	274
M16x1,5	0,08	91,4	134,2	157,1	159	233	273
	0,10	89,6	131,6	154,0	189	278	325
	0,12	87,6	128,7	150,6	218	320	374
	0,14	85,5	125,5	146,9	244	359	420
M18x1,5	0,08	122	174	204	237	337	394
	0,10	120	171	200	283	403	472
	0,12	117	167	196	327	465	544
	0,14	115	163	191	368	523	613
M20x1,5	0,08	154	219	257	327	466	545
	0,10	151	215	252	392	558	653
	0,12	148	211	246	454	646	756
	0,14	144	206	241	511	728	852
M22x1,5	0,08	189	269	315	440	627	734
	0,10	186	264	309	529	754	882
	0,12	182	259	303	613	873	1022
	0,14	178	253	296	692	985	1153
M24x2	0,08	217	310	362	557	793	928
	0,10	213	304	355	666	949	1110
	0,12	209	297	348	769	1095	1282
	0,14	204	290	339	865	1232	1442

Verweis

Erläuterungen zur Reibungszahl, Seite 57

Richtwerte für Schraubenbolzen mit Dehnschaft

Schraubenbolzen aus Stahl 21 CrMo V 5 7 (DIN 2510 L Blatt 3) Richtwerte für Montage-Vorspannkräfte und Anziehdrehmomente bei 70 % der Mindest-Dehngrenze $\rm R_{p\,0,2}$

Regelgewinde	M12		M16		M20		M24		
Schaft-Ø	8,5	8,5	12	12	15	15	18	18	
$\mu_K = \mu_G$	0,10	0,12	0,10	0,12	0,10	0,12	0,10	0,12	
F _M [N]	21 600	21 600	43500	43500	67800	67800	97800	97800	
M _A [Nm]	38	44	98	115	190	220	320	370	

Anziehdrehmomente für Schrauben aus Polyamid 6.6 und Polyamid 6.6-GF50

nach DIN 34810: 2018-04

Die Tabellen enthalten Richtwerte für zweckmässige Anziehdrehmomente für Schrauben aus Polyamid 6.6 (PA6.6 + PA6.6-GF50) bei 20 °C nach Lagerung in Normalklima (relative Luftfeuchte nach ISO 554) bis zur Einstellung des Feuchtegleichgewichts.

Anziehdrehmomente für Schrauben aus PA6.6 Anziehdrehmomente für Schrauben aus P

Gewinde	M3	M4	M5	M6	M8	M10					
M _A [Nm]	0,1	0,25	0,5	0,8	1,8	3,5					

Anziehdrehmom	ente für Schrauben	aus PA6.6-GF50	
Gewinde	M5	M6	M8

1,75

4,0

Um die in den Tabellen vorgegebenen Anziehdrehmomente nicht un-

zulässig zu überschreiten, wird eine maximale Drehzahl des Schraub-

werkzeuges von 150 U/min empfohlen.

0,75

Anziehdrehmomente (Richtwerte) für Schrauben aus Messing (CU2)

Gewinde	M2	M2,5	МЗ	M3,5	M4	M5	M6	M8	M10
M _A [Nm]	0,13	0,27	0,48	0,8	1,1	2,2	3,7	9,1	18,3

 M_A [Nm]

Schrauben aus austenitischen Stählen, INOX A1/A2/A4

Vorspannkräfte/Anziehdrehmomente (metrisches Regelgewinde) für Schaftschrauben der Festigkeitsklassen 50/70/80 bei einer 90%-igen Ausnutzung der Dehngrenze $R_{p\,0,2}$.

Die Tabelle berücksichtigt keine Sicherheiten und setzt die Kenntnis der Auslegungskriterien voraus.

Gewinde	$\mu_K = \mu_G$		nnkraft F eitsklass	_{M max} [kN] se	M _{A max} [Nm] Festigkeitsklasse			
		50	70	80	50	70	80	
	0,1	0,21	0,45	0,6	0,05	0,11	0,15	
M1,6	0,2	0,18	0,39	0,5	0,08	0,17	0,22	
	0,3	0,15	0,33	0,44	0,09	0,2	0,27	
	0,1	0,35	0,74	1	0,11	0,23	0,30	
M2	0,2	0,3	0,64	0,85	0,16	0,35	0,46	
	0,3	0,25	0,55	0,7	0,2	0,43	0,57	
	0,1	0,58	1,23	1,64	0,22	0,46	0,62	
M2,5	0,2	0,5	1,06	1,42	0,34	0,72	0,97	
	0,3	0,42	0,9	1,21	0,42	0,89	1,19	
	0,1	0,86	1,84	2,5	0,37	0,8	1,1	
МЗ	0,2	0,75	1,6	2,12	0,59	1,26	1,7	
	0,3	0,64	1,36	1,81	0,73	1,56	2,1	
	0,1	1,5	3,2	4,2	0,86	1,85	2,4	
M4	0,2	1,3	2,76	3,6	1,35	2,9	3,8	
	0,3	1,1	2,35	3,1	1,66	3,6	4,7	
	0,1	2,4	5,2	6,9	1,6	3,6	4,8	
M5	0,2	2,1	4,51	6	2,6	5,7	7,6	
	0,3	1,8	3,85	5,1	3,3	7	9,4	
	0,1	3,4	7,3	9,7	2,9	6,3	8,4	
M6	0,2	3	6,4	8,4	4,6	10	13,2	
	0,3	2,5	5,5	7,2	5,7	12,2	16,3	
	0,1	6,2	13,4	17,9	7,1	15,2	20,3	
M8	0,2	5,4	11,6	15,5	11,2	24,1	32,1	
	0,3	4,6	9,9	13,3	13,9	30	40	
	0,1	9,9	21,3	28,4	14	30	39	
M10	0,2	8,6	18,5	24,7	22,2	47,7	63	
	0,3	7,4	15,8	21,1	27,6	59,3	79	
	0,1	14,4	31	41,4	24	51	68	
M12	0,2	12,6	27	36	38	82	109	
	0,3	10,7	23	30,8	47	102	136	
	0,1	19,8	42,6	56,8	38	82	109	
M14	0,2	17,3	37	49,5	61	131	175	
	0,3	14,8	31,7	42,3	76	163	217	
	0,1	27,2	58	77,7	58	126	168	
M16	0,2	23,7	51	67,9	95	204	272	
	0,3	20,3	43,5	58,2	119	255	340	

Gewinde	$\mu_K = \mu_G$	Vorspan Festigke	nkraft F _M eitsklasse		M _{A max} [N	rehmomo lm] eitsklasse	
		50	70	80	50	70	80
	0,1	33,2	71	94	82	176	235
M18	0,2	28,9	62	82	131	282	376
	0,3	24,7	53	70	164	352	469
	0,1	42,5	91	121	115	247	330
M20	0,2	37,1	79,6	106	187	401	534
	0,3	31,8	68	90	234	501	669
	0,1	52,9	113	151	157	337	450
M22	0,2	46,3	99,3	132	257	551	735
	0,3	39,7	85,2	114	323	692	923
	0,1	61,2	131	175	198	426	568
M24	0,2	53,5	115	153	322	690	920
	0,3	45,8	98	131	403	863	1151
	0,1	80,2	-	-	292	-	-
M27	0,2	70,3	-	-	478	-	-
	0,3	60,3	-	-	601	_	_
	0,1	97,6	-	-	397	-	-
M30	0,2	85,5	-	-	648	-	-
	0,3	73,3	-	_	831	_	_
	0,1	121	-	-	536	-	-
M33	0,2	106	-	-	880	-	-
	0,3	91	-	_	1108	_	_
	0,1	143	-	-	690	-	-
M36	0,2	125	-	-	1130	-	-
	0,3	107	-	_	1420	_	_
	0,1	171	-	-	890	_	_
M39	0,2	150	-	-	1467	_	-
	0,3	129	-	-	1848	-	_

Verbindungselemente aus diesen austenitischen Stählen neigen bei der Montage zum Festfressen. Diese Gefahr wird vermindert durch glatte, saubere Gewinde-oberflächen (gerollte Gewinde), Schmiermittel, Molykotegleitlackbeschichtung (schwarz), niedrige Tourenzahl des Schraubers, zügiges Anziehen ohne Unterbrechung (Schlagschrauber daher ungünstig).

Verweis

Erläuterungen zur Reibungszahl μ , Seite 57

Sicherheit in der Verbindungstechnik bedingt die richtige Spezifikation des Schmierzustandes

Die Reibungszahl wird vor allem durch die Werkstoffpaarung, die Auflageflächen und deren Schmierzustand beeinflusst. Die Kenntnis der Reibungszahl ist für die Sicherheit in der Montage mit der Beziehung «Moment-Vorspannkraft» eine Voraussetzung.

Korrosionsangriffe im Gewinde oder den Auflageflächen beeinträchtigen das Löseverhalten nach einer bestimmten Betriebsdauer. Unterschiedliche Materialpaarungen, hohe Betriebstemperaturen und Feuchtigkeit verstärken das Festfressen und erschweren die Montage resp. Demontage.

Für eine prozesssichere Montage ist das Schmieren mit tribologischen Trockenbeschichtungen zu empfehlen

Die tribologische Trockenbeschichtung ist eine Systemlösung für mechanisch belastete Befestigungselemente und Bauteile (Schrauben, Muttern, Scheiben). Die Beschichtung ist ein nicht elektrolytisch aufgebrachter, dünnschichtiger Überzug mit integrierten Schmiereigenschaften und einem zusätzlichen Korrosionsschutz.

Die Anti-Friction-Coatings sind grifffeste Gleitlacke, die hinsichtlich ihrer Formulierung herkömmlichen Industrielacken gleichen. Zum Beispiel **CresaCoat®** als eine wirtschaftliche Lösung gewährt gleichbleibende Reibungszahlen und ergibt eine zusätzliche Vereinfachung der Montageprozesse.

Verbindungselemente mit Innenantrieben und niedrigen Kopfformen

	1	nziehdrehmom		ı	1	1	ı		1	1
Normbezug	ISO 7379	DIN 6912	DIN 7984	Bossard	Bossard	ISO 14580	ISO 14583	~ISO 14583	ISO 7380-1	~ISO 7380-1
Schrauben- typ						ji	(t)			(i)
Stahl	012.9	08.8	08.8	010.9	08.8	08.8	08.8	08.8	010.9	08.8
	BN 1359	BN 15 BN 20737	BN 16 BN 17	BN 1206 BN 20697 BN 20698	BN 9524	BN 4850	BN 20005	BN 20228 BN 84405	BN 19 BN 13255 BN 30102	BN 6404
M 2	_	-	-	0,22	0,19	0,25	0,25	-	0,27	0,25
M2,5	_	_	_	0,45	0,4	0,5	0,5	_	0,6	0,5
M3	_	1	0,9	0,8	0,7	0,9	0,9	0,9	0,95	0,9
M3,5	_	_	_	_	_	_	_	_	_	_
M4	_	2,3	2,1	1,95	1,6	2	2	2	2,3	2
M5	5,2	4,6	4	3,8	3,2	4	4	4	4,6	4
M6	9	8,1	7,2	6,6	5,4	7,2	7,2	7,2	8	7,2
M8	21,6	19,4	17,3	16	13	17	17	_	19	17,3
M10	43	38,7	34,4	32	23	34	34	_	38	34,5
M12	73	65	58	_	_	_	_	_	65	58
M14	_	105	_	_	_	_	_	_	_	_
M16	180	162	144	_	_	_	_	_	_	_
M20	363	330	290	_	_	_	_	_	_	_
M22	_	_	_	_	-	_	-	_	1_	-
M24	_	560	500	_	_	_	_	_	_	_
INOX		A2 / A4	A2		A2	A2	A2 / A4		A2 / A4	
		BN 33001 BN 1350	BN 2844		BN 20146	BN 15857	BN 5687 BN 20038		BN 1593 BN 6971 BN 8699	-
M2	_	_	-	_	0,14	0,19	0,19	-	0,19	_
M2,5	_	_	-	_	0,28	0,37	0,37	-	0,37	-
M3	_	_	0,6	_	0,5	0,64	0,64	_	0,64	-
M3,5	_	_	-	_	-	-	-	-	_	-
M4	_	1,5	1,3	_	1,1	1,5	1,5	_	1,5	_
M5	_	2,9	2,6	_	2,2	3	3	-	3	_
M6	_	5	4,5	_	3,8	5	5	_	5	_
M8	_	12	10	_	9,1	12	12	-	12	_
M10	_	24	21	_	18	24	24	-	24	_
M12	_	40	36	_	_	_	_	-	40	_
M14	_	65	-	_	_	_	_	-	_	_
M16	_	100	90	_	_	_	_	-	_	_
M20	_	200	180	_	_	_	-	-	-	-
M22	_	_	_	_	_	-	_	_	_	_

Verweis
Reduzierte Belastbarkeit, Seite 66

Randbedingungen prüfen

Die Schrauben sind nicht für die Übertragung hoher Betriebskräfte geeignet. Die Innen- und Aussenantriebe dieser Schrauben erlauben nur reduzierte Anziehdrehmomente.

Reduzierte Belastbarkeit

Schrauben nach vorliegender Spezifikation unterliegen wegen ihrer Kopfgeometrie und / oder Antriebsform einer reduzierten Belastbarkeit nach ISO 898-1, das heisst reduzierte Anziehdrehmomente sind zu berücksichtigen.

Die angegebenen Anziehdrehmomente können bedingt durch die Wahl des Innenantriebs nicht immer prozesssicher aufgebracht werden – speziell konische Bits können hilfreich sein.

		Anziehdrehm			1			T			
Norm	Bossard ~ISO7380-2	Bossard ~ISO7380-2	ecosyn®-fix	ecosyn®-fix	SN 213307	ISO 14583	DIN 7991 ISO 10642	DIN 7991 ISO 10642	ISO 14581	ecosyn®-fix	DIN/ISO
Schrauben- typ										0	
											DIN 913/ISO 4026 DIN 34827 FL DIN 914/ISO 4027
											DIN 915/ISO 4028 DIN 916/ISO 4029 DIN 34827 CP
Stahl	08.8	010.9	4.8	4.8	4.8	4.8	08.8	010.9	08.8	4.8	45 H ¹⁾
	BN 20367	BN 11252 30104	BN 5128	BN 4825	BN 380 381	BN 30503	BN 30105 2100	BN 20 21 1422 2101 2102 2103	BN 4851	BN 5950	Diverse
M2,5	_	_	0,4	0,3	0,3	-	0,5	0,55	0,5	_	_
M3	1	1	0,7	0,5	0,5	0,7	0,9	0,95	0,9	0,5	0,5
M4	2,5	2,5	1,6	1,2	1,2	1,6	2	2,3	2	1,2	1,5
M5	5	5	3,2	2,4	2,4	3,2	4	4,6	4	2,4	3
M6	8	8	5,4	4	4	5,4	7,2	7,9	7,2	4,1	5
M8	20	20	-	-	-	-	17	19	17	10	12
M10	40	40	-	-	-	-	35	38	35	20	24
M12	66	66	-	-	-	-	58	65	58	34	40
M14	-	-	-	-	-	-	93	100	93	-	60
M16	-	-	-	-	-	-	144	158	144	-	100
M18	-	-	-	-	-	-	-	220	205	-	120
M20	-	-	-	-	-	-	-	310	290	-	180
M22	-	-	-	-	-	-	-	420	400	-	210
M24	-	-	-	-	_	-	-	530	500	-	310
Inox	A2		A2					A2/A4		A2	A2/A4
	BN 2058		BN 10649	BN 5952	BN 2845			BN 616 4719 2104 2105	BN 3803 20039	BN 5951	Diverse
M2,5	-	-	0,5	0,4	0,4	-	-	0,23	0,23	-	-
M3	0,64	-	0,8	0,8	0,8	-	-	0,4	0,4	0,8	0,2
M4	1,5	-	1,8	1,6	1,6	-	-	0,9	0,9	1,8	0,7
M5	3	-	3,6	3,2	3,2	-	-	1,8	1,8	3,6	1,5
M6	5	-	6,3	6	6	-	-	3,1	3,1	6,3	2,5
M8	12	-	-	-	-	-	-	7,6	7,6	15,2	6
M10	-	_	_	_	_	_	-	15	15	30	12
M12	-	-	-	-	-	-	-	25	25	51	20
M14	-	-	-	-	-	-	-	40	40	-	30
M16	-	-	-	-	-	-	-	63	63	-	50
M18	-	-	-	-	_	-	-	85	85	-	90
M20	-	-	-	_	-	_	-	120	120	-	105
M22	-	-	_	_	_	-	-	160	160	_	150
M24	-	-	-	-	-	-	-	200	200	-	_

¹⁾ Festigkeitsklasse und mechanische Eigenschaften nach ISO 898, Teil 5 gelten für nicht zugbeanspruchte Gewindestifte.

Flanschschrauben und Muttern mit Flansch

 $\label{eq:continuous} Anziehdrehmomente\ M_{A}\ [Nm]\ und\ erzielbare\ Vorspannkräfte\ F_{M}\ [kN]\ für\ VERBUS\ RIPP®-Schrauben/Muttern\ und\ INBUS\ RIPP®-Schrauben\ bei\ einer\ 90\ \%-igen\ Ausnutzung\ der\ Dehngrenze\ R_{p\ 0,2}$

Unterkopf mit Rippen	Gegenwerkstoff	Reibungszahl ~µtot	Richtw	erte Anziel	ndrehmom	ente M _A [Nr	n]		
			М5	M6	M8	M10	M12	M14	M16
Bezeichnung	Stahl	0,13 bis 0,16	10	18	37	80	120	215	310
Festigkeitsklasse	$R_m \ge 800 \text{ N/mm}^2$								
VERBUS RIPP®	Stahl	0,12 bis 0,18	11	19	42	85	130	230	330
BN 2797, BN 9727	$R_{\rm m}$ < 800 N/mm ²								
Festigkeitsklasse 100	Grauguss	0,125 bis 0,16	9	16	35	75	115	200	300
	R _m ~150 bis 450 N/mm ²								
	Aluminium-Legierung	0,14 bis 0,2	16	28	65	120	190	320	450
	weich, nicht ausgehärtet								
BN 2798, BN 14527	Aluminium-Legierung	0,13 bis 0,18	14	25	55	100	160	275	400
Festigkeitsklasse 10	hart, ausgehärtet								
	~Vorspannkraft F _M [kN] ¹⁾								
			9	12,6	23,2	37	54	74	102
TINBUS RIPP®	Stahl	0,13 bis 0,16	11	20	42	85	140		
BN 3873	$R_m \ge 800 \text{ N/mm}^2$	0,10 013 0,10	''	20	72	000	140		
Festigkeitsklasse 100	Stahl	0,12 bis 0,18	13	24	45	90	150		
	R _m < 800 N/mm ²	' ' ' ' ' ' ' ' ' '							
	Grauguss	0,125 bis 0,16	10	19	39	80	120		
antino, a	R _m ~150 bis 450 N/mm ²								
		·	~Vorsp	oannkraft F	M [kN]1)				
			9	12,6	23,2	37	54		

Anziehdrehmomente M_A [Nm] und erzielbare Vorspannkräfte F_M [kN] für VERBUS TENSILOCK®-Schrauben/Muttern bei einer 90 %-igen Ausnutzung der Dehngrenze R_{p 0,2}

Unterkopf Aussenkanten-	Gegenwerkstoff	Reibungszahl ~µ _{tot}	Richtw	erte Anzieh	ndrehmome	ente M _A [Nr	n]		
Verzahnung			M5	M6	M8	M10	M12	M14	M16
Bezeichnung	Stahl	0,14 bis 0,18	9,5	16,5	40	79	137	218	338
Festigkeitsklasse	R _m ~500 bis 900 N/mm ²								
VERBUS TENSILOCK®	Grauguss	0,12 bis 0,18	7,6	13,2	31,8	63	108	172	264
BN 73 Festigkeitsklasse 90	R _m ~150 bis 450 N/mm ²								
	Aluminium-Legierung weich,	0,16 bis 0,24	10,5	18,2	44	87	150	240	372
	nicht ausgehärtet								
			~Vorsp	annkraft F	, [kN] ¹⁾		<u>, </u>		<u>'</u>
BN 190, BN 30312,			6,35	9	16,5	26,6	38,3	52,5	73
Sechskant-	Stahl	0,12 bis 0,18	6,5	11,3	27,3	54	93	148	230
Sperrzahnschrauben	R _m ~500 bis 900 N/mm²								
BN 20170, BN 20226, BN 80007	Grauguss	0,12 bis 0,16	5,9	10,1	24,6	48	84	133	206
Festigkeitsklasse 8,8	R _m ~150 bis 450 N/mm ²								
ATTA (1	Aluminium-Legierung	0,14 bis 0,2	7,8	13,6	32,7	65	112	178	276
	weich, nicht ausgehärtet								
			~Vorsp	annkraft F	и [kN]¹)				
			7	9,9	18,1	28,8	41,9	57,5	78,8

^{¹)} Richtwerte mit blanken Verbindungselementen für erreichbare Vorspannungen F_M [kN] für Stahl-Gegenlage mit Zugfestigkeit ≤ 800 N/mm²

■ Montage
Richtwerte für erreichbare Vorspannkräfte sind in der Praxis zu überprüfen.

Anziehdrehmomente M_A [Nm] und erzielbare Vorspannkräfte F_M [kN] für ecosyn®-grip Schrauben bei einer 90%-igen Ausnutzung der Dehngrenze $R_{p\,0,2}$

Unterkopf Flächen-	Gegenwerkstoff	Reibungszahl ~µ _{tot}	Richtwerte	Anziehdrehmome	nte M _A [Nm]		
Verzahnung			M5	M6	M8	M10	
Bezeichnung	Stahl	0,15 bis 0,20	8,5	15	29	67	
Festigkeitsklasse	R _m ~500 bis 900 N/mm ²						
ecosyn®-grip BN 219 Festigkeitsklasse 8.8	Grauguss R _m ~150 bis 450 N/mm²	0,11 bis 0,25	10	17	21	47	
	Aluminium-Legierung weich, ausgehärtet	0,22 bis 0,40	17	29	36	87	
	Aluminium-Legierung hart, ausgehärtet	0,19 bis 0,35	14	25	33	76	
			~Vorspannkraft F _M [kN]¹)				
			7	9,9	18,1	28,8	

¹¹¹ Richtwerte mit blanken Verbindungselementen für erreichbare Vorspannungen F_M [kN] für Stahl-Gegenlage mit Zugfestigkeit ≤ 800 N/mm²

Montage

Richtwerte für erreichbare Vorspannkräfte sind in der Praxis zu überprüfen.

Anziehdremomente ecosyn® SEF

Anziehdrehmomente $\rm M_A$ [Nm] und erzielbare Montage-Vorspannkräfte $\rm F_M$ [kN] für ecosyn® SEF Muttern bei einer 90%-igen Ausnutzung der Dehngrenze $\rm R_{p\,0,2}$

Bezeichnung der Mutter	Schraubenwerkstoff	Reibungszahl ~µ _{tot}	Richtwe	erte max. An	ziehdrehmom	ente M _A [Nm]	
			M4	M5	M6	M8	M10	M12
Festigkeitsklasse	Stahl Klasse 8.8	0,14 bis 0,24	3,3	6,5	11,3	27,3	54	93
ecosyn® SEF			~Monta	ge-Vorspann	kraft F _M [kN] ¹)		
BN 33855 (Typ L)			4,3	7	9,9	18,1	28,8	41,9
Festigkeitsklasse 8							·	
ecosyn® SEF BN 33966 (Typ M) Festigkeitsklasse 8								

 $^{^{1)}}$ Richtwerte mit blanken Verbindungselementen für erreichbare Montage-Vorspannkräfte F_{M} [kN]

Montage

Richtwerte für erreichbare Vorspannkräfte sind in der Praxis zu überprüfen.

Vorspannkräfte und Anziehdrehmomente

Drehmoment-Richtwerte für NORD-LOCK®-Keilsicherungsscheibenpaar

■ Die Richtwerte für Anziehdrehmomente

basieren auf Labortests und sind für die jeweilige Anwendung zu prüfen und frei zu geben. Unter besonderen Praxisbedingungen können auch kleinere Reibwerte erreicht werden!

Drehmoment-Richtwerte nach ISO 16047 auf Basis von Molykote® 1000 Graphit-Paste für NORD-LOCK®-Scheiben mit Zinklamellenbeschichtung, gepaart mit Schrauben 8.8, 10.9, 12.9 und austenitischen Stählen

NORD-LOCK®

Festigkeitsklasse	Schmiermitteltyp	Reibungskoeffizie	Reibungskoeffizienten							
	Im Gewinde und unter Kopf	μGewinde min	μGewinde max	μKopf min	μKopf max	μtot min	μtot max			
8.8	Molykote® 1000	0,10	_	0,13	-	0,12	0,20			
10.9	Molykote® 1000	0,10	-	0,11	-	0,11	0,18			
12.9	Molykote® 1000	0,10	_	0,10	-	0,11	0,17			
A2-70, A4-70	Molykote® 1000	0,10	-	0,08	_	0,10	0,16			
A2-80, A4-80										

NORD-LOCK®

Festigkeits-	Bauteilwerk-	Schmiermitteltyp	Reibungs										
klasse	stoff	Im Gewinde und unter Kopf	koeffizient µtot	M5x0,8	M6x1	M8x1,25	M10x1,5	M12x1,75	M16x2	M20x2,5	M24x3	M27x3	M30x3,5
8.8	Stahl Rm < 800	Molykote® 1000	0,12 bis 0,20	Anziehdre 5,9	hmom	ent M _{A max} [Nm] 48	84	206	415	714	1050	1420
N/mm²	N/mm ²					,							
		ale Vorspannkraft beim niedrigsten gskoeffizienten		Max Vorsp	oannkra	aft F _M [kN]							
	Reibungskoeffizie			7,2	10,2	18,6	29,6	43	81	130	188	246	300
10.9	Stahl	Molykote® 1000	0,11 bis 0,18	Anziehdre	hmom	ent M _{A max} [Nm]						
	Rm ≥ 800 N/mm ²				14	33,9	66,8	115	283	554	953	1400	1900
	Maximale Vorspa	ınnkraft beim niedrigs	ten	Max Vorspannkraft F _M [kN]									
Re	Reibungskoeffizienten		10,7	15,2	27,7	44	64,1	120	188	270	355	432	
	Stahl Molykote® 1000		0,11 bis 0,17	Anziehdrehmoment M _{A max} [Nm]									
	Rm ≥ 800 N/mm ²				16,4	39,7	78,2	134,9	331	648	1120	1640	2230
	Maximale Vorspa	Maximale Vorspannkraft beim niedrigsten			Max Vorspannkraft F _M [kN]								
	Reibungskoeffizie	enten		12,5	17,7	32,4	51,5	75	141	220	317	416	506
A2-70	Austenitischer	Molykote® 1000	0,10 bis 0,16	Anziehdrehmoment M _{A max} [Nm]									
A4-70	Stahl 100 – 200 HV				6,3	15,2	29,9	51,6	126	247	425	623	848
	Maximale Vorspa	ınnkraft beim niedrigs	ten	Max Vorspannkraft F _M [kN]									
	Reibungskoeffizie	enten		5,2	7,3	13,4	21,3	31,1	58,3	91,1	131	172	209
A2-80	Austenitischer	Molykote® 1000	0,10 bis 0,16	Anziehdre	hmom	ent M _{A max} [Nm]						
A4-80	Stahl 200 – 300 HV		, , , , , , ,		8,4	20,2	39,9	68,7	169	330	567	831	1131
	Maximale Vorspa	ınnkraft beim niedrigs	ten	Max Vorsp	annkra	ft F _M [kN]							
	Reibungskoeffizienten			6.9	9,8	17,9	28,5	41,4	77,7	121	175	229	279

Vorspannkräfte und Anziehdrehmomente

Montagevorspannkraft und Anziehdrehmoment basieren auf folgenden Bedingungen:

- Sechskantschrauben nach ISO 4014 oder ISO 4017
- Zylinderschrauben nach ISO 4762
- Durchgangsbohrung gemäss ISO 273-m
- v = 0,9 für Schaftschrauben mit metrischem Normgewinde nach ISO 68 oder ISO 724

Die Streuung des angewendeten Drehmoments, die je nach dem gewählten Anziehverfahren variieren wird, sollte bei der Festlegung des angewendeten Drehmoments berücksichtigt werden.

Bei den Angaben handelt es sich um Referenzwerte, die dem Ausgangszustand des Materials, dem spezifizierten Zweck und der Verwendung im geschmierten Zustand entsprechen.

Je nach der Art der mechanischen und dynamischen Beanspruchung ändern sich die Oberflächenbedingungen in Abhängigkeit von Temperatur, Druck und Montagegeschwindigkeit und können die Reibungsverhältnisse der Bauteile beeinflussen.

Die Reibwerte nach ISO 16047 für mit MOLYKOTE® 1000 geschmierte Schrauben basieren auf der ersten Verschraubung und den Grundsätzen der VDI 2230, vorausgesetzt, die Oberfläche des Innengewindes entspricht der Oberfläche der Schraube. Bei allen anderen Kombinationen von Oberflächen sollten die Reibwerte überprüft werden.

Bei einigen aussergewöhnlichen Anwendungen, bei denen die verspannten Bauteile eine hohe Härte und eine geringe Oberflächenrauigkeit aufweisen, kann ein Durchrutschen während des Festziehens gegen das verspannte Teil erfolgen und den Reibungskoeffizienten (μKopf) verringern.

Haftungsausschluss

Die angegebenen Drehmomentwerte in dieser Leitlinie wurden in Testlaboren verifiziert und stellen Konfigurationsbeispiele dar. Die Leitlinie soll eine Hilfe bei der Berechnung der Drehmomente sein und sollte daher auch nur als solche genutzt werden. Jegliche Berechnungen mit Bezug auf diese Leitlinie müssen vor der Verwendung überprüft und getestet werden. Nord-Lock International AB und unsere Tochtergesellschaften übernehmen keine Haftung für Arbeiten oder Konstruktionen, deren Berechnungen auf der Leitlinie beruhen.

Der Inhalt dieser Dokumentation kann nicht als Zulassung oder Empfehlung ausgelegt werden, Patent- oder Markenrechte von NORD-LOCK® zu verletzen, www.nord-lock.com.

Torquelator von nord-Lock

Der «Online-Rechner» berechnet die Vorspannkraft und das entsprechende Drehmoment für Schraubenverbindungen, die mit Nord-Lock Keilsicherungsscheiben gesichert sind. Wählen Sie zwischen zwei verschiedenen Berechnungsmethoden (Kellermann & Klein und VDI 2230), wählen Sie die Schraubengrösse (metrisch und zoll), die Festigkeitsklasse und das Schmiermittel, um das Drehmoment zu erhalten.

Hochfeste Schrauben für den Stahlbau (HV-Garnituren)

Mit der in Kraft getretenen Bauproduktenverordnung 305/2011 ist für spezifizierte Bauprodukte neu eine **Leistungserklärung** für die **CE-Kennzeichnung** erforderlich. Die Verordnung (BauPVO) ersetzt damit die bisherige Bauproduktenrichtlinie (**Richtlinie 89/106/EWG**). DIN 18800-7 für die Ausführung von tragenden Bauteilen aus Stahl und Regeln zur Herstellerqualifikation wird durch die EN 1090 ersetzt. EN 1090 legt die Anforderungen an den Konformitätsnachweis von Stahlbauwerken fest, die als Bauprodukte in Verkehr gebracht werden.

Die Einzelanforderungen an Verbindungselemente regeln die harmonisierten Normen EN 15048 und EN 14399-ff für den **Stahlbau resp. Metallbau.**

Ausdrücklich hervorzuheben ist, dass die CE-Kennzeichnung nur dann verpflichtend zu berücksichtigen ist, wenn die Verbindungselemente in einem Bauwerk verwendet werden, um dauerhaft dort zu verbleiben und die Grundanforderungen an Bauwerke massgebend mit beeinflussen

Verbindungselemente mit konkreten Anforderungen aus der Bautechnik müssen bereits bei der Anfrage/Bestellung mit entsprechender Spezifikation den Bezug zur jeweiligen **harmonisierten Norm** oder der **Leistungserklärung** enthalten. Festigkeitsklassen von Schrauben und Muttern und gegebenenfalls Oberflächenbehandlungszustände müssen zusammen mit allen notwendigen Auswahlmöglichkeiten festgelegt werden, die durch die Produktnorm zugelassen sind.

Die Eurocodes sind als europäisches Standardwerk in Bezug auf die Konstruktion von Gebäuden und anderen Ingenieurbauten festgelegt. Für die Bemessung von Stahlbauten gilt die EN 1993.

Kategorien von Schraubenverbindungen nach EN 1993-1-8

Scherverbindungen

Kat. A	Scher- / Lochleibungsverbindung	Vorspannung nach Norm nicht gefordert
Kat. B	Gleitfeste Verbindung im Grenz- zustand der Gebrauchstaug- lichkeit	Vorspannung erforderlich
Kat. C	Gleitfeste Verbindung im Grenz- zustand der Tragfähigkeit	Vorspannung erforderlich

Zugverbindungen

Kat. D		Vorspannung nach Norm nicht gefordert
Kat. E	Vorgespannt	Vorspannung erforderlich

Zusammenstellung von hochfesten Garnituren für Schraubenverbindungen im Metallbau nach EN 14399

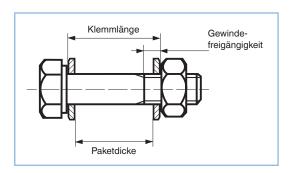
Art der Garnitu Schraubverbin		System HR			System HV		System HRC			
Allgemeine Anforderungen EN 14399-1										
Eignung zum V	orspannen	EN 14399-2 un	d, falls erforder	lich, zusätzliche	in der Produktr	norm festgeleg	te Prüfungen			
Schraube und M	Mutter EN 14399-3 EN 14399-7			EN 14399-4	EN 14399-8	EN 14399-10	'			
Kennzeichnung	Schraube	HR8.8	HR10.9	HR8.8	HR10.9	HV10.9 HVP10.9		HRC10.9	HRC10.9	
	Mutter	HR8 oder HR10	HR10	HR8 oder HR10	HR10	HV10		HR10	HRD10	
Scheibe(n)		EN 14399-5 ¹⁾ oder EN 14399-6		EN 14399-5 ¹⁾ oder EN 14399-6		EN 14399-6		EN 14399-6	EN 14399-5 ¹⁾ oder EN 14399-6	
Kennzeichnung		H oder HR ²⁾		H oder HR ²⁾		H oder HV ²⁾		H oder HR ²⁾	H oder HR ¹⁾ oder HD ³⁾	

¹⁾ Scheiben nach EN 14399-5 können nur unter der Mutter verwendet werden.

²⁾ Nach Wahl des Herstellers.

³⁾ Verpflichtende Kennzeichnung nur für Scheiben mit vergrössertem Aussendurchmesser nach EN 14399-5.

Normbeziehung DIN / EN


Norm	Inhalt	Abmessung	Festigkeit	Ersetzt durch
DIN 6914	HV-Schrauben	M12-M36	10.9	EN 14399-4
DIN 6915	HV-Muttern	M12-M36	10	EN 14399-4
DIN 6916	HV-Scheiben rund	13-37	300-370 HV	EN 14399-6
DIN 6917	Scheiben vierkant, keilförmig (für I-Profile)	13-37	295-350 HV	bleiben bestehen
DIN 6918	Scheiben vierkant, keilförmig (für U-Profile)	13-37	295-350 HV	bleiben bestehen
DIN 7999	HV-Passschrauben	M12-M30	10.9	EN 14399-8

Klemmlänge

In der EN $1\bar{4}$ 399-4 wird die Klemmlänge zwischen der Auflagefläche des Schraubenkopfes und der Mutter gemessen.

Der Abstand zwischen den Unterlagen wird neu als Paketdicke bezeichnet. Eine genügende Gewindefreigängigkeit sollte berücksichtigt werden.

Bei planmässig vorgespannten Schrauben nach EN 14399-3, EN 14399-7 und EN 14399-10 müssen mindestens vier vollständige Gewindegänge zwischen der Auflagefläche der Mutter und dem gewindefreien Teil des Schraubenschaftes sein.

Anziehverfahren

Garnituren für nicht planmässig vorgespannte Schraubenverbindungen

Garnituren für nicht planmässig vorgespannte Schraubenverbindungen aus unlegierten Stählen, legierten Stählen und austenitischen, nichtrostenden Stählen müssen EN 15048-1 entsprechen.

Garnituren nach EN 14399-1 dürfen auch für nicht planmässig vorgespannte Schraubenverbindungen eingesetzt werden.

Garnituren für planmässig vorgespannte Schraubenverbindungen

Hochfeste planmässig vorgespannte Schraubenverbindungen umfassen die Systeme HR, HV und HRC. Sie müssen den Anforderungen von EN 14399-1 und der zutreffenden Europäischen Norm entsprechen

Schrauben aus nichtrostendem Stahl dürfen nicht in planmässig vorgespannten Anwendungen eingesetzt werden, sofern nichts anderes festgelegt wird. Wenn sie eingesetzt werden, dann müssen sie als besondere Verbindungsmittel behandelt werden.

Sofern nichts anderes festgelegt wird, ist für den Nennwert der Mindestvorspannkraft $F_{\rm p,C}$ anzusetzen:

 $F_{p,C} = 0.7 \times f_{ub} \times A_s$, wobei f_{ub} die Nennfestigkeit des Schraubenwerkstoffs und A_s die Spannungsquerschnittsfläche der Schraube ist.

Anziehverfahren für k-Klassen

Anziehverfahren	Vorspannung	k-Klassen
Drehmomentverfahren	$F_{p,C}$	K2
Kombiniertes Vorspannverfahren	F _{p,C}	K1 (oder K2)
Modifiziertes Vorspannverfahren	F _{p,C*}	K1

Für die angelieferten HV-Garnituren werden sogenannte **k-Klassen** definiert, welche eine indirekte Angabe des vorliegenden Reibwertzustandes der Garnitur darstellt. Die **Klasse K1** z.B. spezifiziert somit den Schmierzustand der Mutter als entscheidendes Element einer Garnitur, damit die Mindestvorspannkräfte prozesssicher erreicht werden. Folglich muss das Anziehen grundsätzlich mutterseitig erfolgen.

Die k-Klassen und ggf. auch die Anziehdrehmomente für das modifizierte Vorspannverfahren nach EN 1993-1-8/NA für $F_{\rm p,C^*}$ sind auf der Verpackung angegeben. Alle Elemente einer HV-Garnitur sind somit aus beliebigen Fertigungslosen eines Herstellers uneingeschränkt kombinierbar und werden separat gepackt angeliefert. Die entsprechenden Anziehdrehmomente und Vorspannkräfte sind in EN 1993-1-8/NA enthalten.

Vorspannkräfte und Anziehdrehmomente für HV-Schraubenverbindungen 10.9 nach EN 14399-4 / EN 14399-6 – k-Klasse K1 nach EN 14399-1

Geltende Norm	Anzugsverfahren	Besonderheiten	
EN 1090-2	Drehmomentverfahren	Nur mit K2 Prüfung in Europa zugelassen (ausser Deutschland)	
EN 1090-2	Kombiniertes Vorspann- / Drehwinkelverfahren	Nur mit K1 oder K2	
	Modifiziertes Drehmoment- und modifiziertes kombiniertes Vorspannverfahren	Wenn Schrauben nicht auf die volle Vorspannkraft angezogen werden	

Drehmomentverfahren

Die Schrauben müssen mit einem Anziehgerät angezogen werden, das einen geeigneten Arbeitsbereich bietet. Handbetriebene oder automatische Drehschrauber können verwendet werden.

Kombiniertes Vorspannverfahren mit Voranziehdrehmomenten und Weiterdrehwinkel für die Festigkeitsklasse 10.9 (EN 1090)

Beim kombinierten Vorspannverfahren für HV-Garnituren 10.9 und einer k-Klasse K1 nach EN 1090-2 zur Erreichung der Mindestvorspannkraft $F_{\rm p,C}$ wird im ersten Schritt ein Voranziehdrehmoment gemäss Tabellenwerten aufgebracht. Dieser erste Schritt muss für alle Schrauben in einer Verbindung vollständig durchgeführt werden, bevor mit dem zweiten Anziehschritt nach Vorgaben mit dem Weiterdrehwinkel begonnen wird.

Erforderliche Vorspannkräfte und Anziehdrehmomente (EN 1090)

EN 1090-2		Schraubendruchmesser in mm							
		12	16	20	22	24	27	30	36
Regelvorspannkraft Fp,C	[kN]	59	110	172	212	247	321	393	572
Referenzdrehmoment (k-Klasse K1) M _{r,1}	[Nm]	92	229	447	606	771	1127	1533	2677
Voranziehmoment = 0,75 M _{r,1}	[Nm]	67	165	322	439	557	815	1107	1935

Erforderlicher Weiterdrehwinkel für das kombinierte Vorspannverfahren an Garnituren der Festigkeitsklasse 10.9 (EN 1090)

Gesamtnenndicke «t» der zu verbindenden Teile (einschliesslich aller Futterbleche und Scheiben) d = Schraubendurchmesser	Während des zweiten Anziehschrittes aufzubringender Weiterdrehwinkel				
< 2 d	60°				
2 d ≤ t < 6 d	90°				
6 d ≤ t ≤ 10 d	120°				

Anmerkung: Ist die Oberfläche unter dem Schraubenkopf oder der Mutter (unter Berücksichtigung von gegebenenfalls eingesetzten Keilscheiben) nicht senkrecht zur Schraubenachse, sollte der erforderliche Weiterdrehwinkel durch Versuche bestimmt werden.

Vorspannkräfte und Anziehdrehmomente

Modifiziertes Drehmomentverfahren (DIN EN 1993-1-8/NA)

Der Anziehvorgang mit dem modifizierten Drehmomentverfahren besteht in der Regel aus zwei Anziehschritten. Ein zu bestimmendes Voranziehdrehmoment von max. 0,75 x modifizierten Referenzdrehmoment wird für alle Schrauben in einer Verbindung angelegt, bevor mit dem zweiten Anziehschritt begonnen wird. Mit dem modifizierten Referenzdrehmoment aus der Tabelle wird die Regel-Vorspannkraft $F_{\text{p,C}}$ im zweiten Schritt erreicht.

Modifiziertes kombiniertes Vorspannverfahren (DIN EN 1993-1-8/NA)

Beim modifizierten kombinierten Vorspannverfahren zur Aufbringung der Regel-Vorspannung F_{p,C}- wird mittels Drehmomentverfahren ein Voranziehdrehmoment aufgebracht. Dieser erste Schritt muss für alle Schrauben in einer Verbindung vollständig durchgeführt werden, bevor mit dem zweiten Anziehschritt nach Vorgaben mit dem Weiterdrehwinkel begonnen wird.

Erforderliche Vorspannkräfte und Anziehdrehmomente (DIN EN 1993-1-8/NA)

DIN EN 1993-1-8/NA		Schraubendruchmesser in mm							
		12	16	20	22	24	27	30	36
Modifizierte Vorspannkraft F _{p,C*}	[kN]	50	100	160	190	220	290	350	510
Modifiziertes Referenzdrehmoment (k-Klasse K1) M _A	[Nm]	100	250	450	650	800	1250	1650	2800
Voranziehmoment für kombiniertes Weiterdrehen	[Nm]	75	190	340	490	600	940	1240	2100

Erforderlicher Weiterdrehwinkel für das kombinierte Vorspannverfahren an Garnituren der Festigkeitsklasse 10.9 (DIN EN 1993-1-8/NA)

Gesamtnenndicke «t» der zu verbindenden Teile (einschliesslich aller Futterbleche und Scheiben) d = Schraubendurchmesser	Während des zweiten Anziehschrittes aufzubringender Weiterdrehwinkel				
< 2 d	45°				
2 d ≤ t < 6 d	60°				
6 d ≤ t ≤ 10 d	90°				

Anmerkung: Ist die Oberfläche unter dem Schraubenkopf oder der Mutter (unter Berücksichtigung von gegebenenfalls eingesetzten Keilscheiben) nicht senkrecht zur Schraubenachse, sollte der erforderliche Weiterdrehwinkel durch Versuche bestimmt werden.