Pressioni di esercizio

Le pressioni di esercizio indicate possono essere raggiunte con l'installazione nei materiali seguenti:

	Materiale del componente	Carico unitario di rottura Rm [N/mm²]	Allungamento percentuale dopo la rottura min. A5 [%]	Carico unitario di scosta- mento dalla proporzionalità Rp0,2 [N/mm²]	Durezza HB
1	Acciaio ad alta resistenza ETG-100 / 44SMn28 AISI 1144	960-1000	6	min. 865	circa 320
2	Acciaio da cementazione C15Pb / 1.0403 AISI 10L15	430-730	10	min. 280	circa 200
3	Ghisa sferoidale EN 1363: GJS-600-3 ASTM A536: 80-60-03	min. 600	3	min. 370	200-290
4	Ghisa sferoidale (Dura-Bar®) EN 1563: GJS-450-10 ASTM A536: 65-45-12	circa 450	12	circa 310	131–217
5	Grauguss EN 1561: GJL-250 ASTM A48: NO.35	circa 350	0,3	165-228	160-250
6	Lega leggera AlCu4Mg1 / EN AW-2024-T3 AA-2024 T4/T6 1)	min. 450	8	min. 310	circa 120
7	Lega leggera AlMgSiPb / EN AW-6012-T6 AA-6012-T6	min. 310	8	min. 260	circa 105
8	Lega leggera da fonderia G-AISi7Mg / EN AC-42100 ASTM/UNS: A356	min. 230	2	min. 190	min. 75

¹⁾ La filiale SFC KOENIG negli Stati Uniti utilizza la specifica 2024-T4/T6.

Applicazioni

Medesimi elevati valori della pressione di esercizio possono essere ottenuti con materiali del componente dotati di caratteristiche meccaniche simili. È comunque necessario rispettare le corrispondenti condizioni di installazione.

Applicazioni in pressofusioni di alluminio, in leghe di magnesio, in metalli non ferrosi e in materiali plastici richiedono un'analisi particolare e possono essere sviluppate a richiesta.

Applicazioni in materiali con elevata durezza e in materiali induriti richiedono un'analisi particolare e possono essere sviluppate a richiesta.

Applicazioni in materiali con trattamenti superficiali (zincatura, anodizzazione, etc.) richiedono un'analisi particolare e possono essere sviluppate a richiesta.

Per i fattori che influiscono negativamente sulla pressione d'esercizio, vedere:

- Principio di ancoraggio
- Rugosità del foro: requisiti
- Raccomandazioni per il progettista

Margine di sicurezza

Il margine di sicurezza tiene in considerazione i fattori incontrollabili. Sollecitazioni dinamiche alla pressione nominale, con 106 cicli e una frequenza di 3–4 Hz, hanno dimostrato che sia la pressione di espulsione misurata, prova A, sia la pressione di collaudo, prova B, si riducono di circa il 20%.